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Motivation

Using the theory of Matsui spectra, the reconstruction theorem of Bondal-Orlov was recently
generalized to the following setting.

Definition 1A line bundle L is said to be ⊗-ample if ⟨L⊗n | n ∈ Z⟩ = PerfX.

On a quasi-projective variety, any (anti-)ample line bundle is ⊗-ample.

Theorem 2 (Ito-Matsui, Ito)Let X be a Gorenstein proper variety with ⊗-ample
canonical bundle ωX. Then, the following assertions hold:

•X can be reconstructed from the triangulated category structure of PerfX;

• If we have PerfX ≃ Perf Y with a variety Y , then X ∼= Y .

Here, note we do not require any projectivity, which is more natural from a dg-categorical
perspective. Now, a natural question is whether or not this is actually a generalization.

Question 3Are there ⊗-ample line bundles that are neither ample nor anti-ample?

Main Theorem (Ito-Olander) Let X be a proper variety and L a line bundle. TFAE:

1.L is ⊗-ample.

2.L|Z is big or anti-big for every closed integral subscheme Z ⊂ X .

The theorem provides a variety of examples and well-behaved theory of ⊗-ample line bundles.

Big line bundles and affine complements

A key technical ingredient is the following characterization of big line bundles, which is inter-
esting in its own right in relation to divisors with affine complements.

Proposition 4Let X be an integral qcqs scheme and L a line bundle. TFAE:

1. There exists an integer n > 0 and a global section s ∈ Γ(X,L⊗n) such that the open
Xs := {s ̸= 0} = X \ V (s) is non-empty and quasi-affine.

2. There exists an integer n > 0 and a global section s ∈ Γ(X,L⊗n) such that the open
Xs is non-empty and affine.

3. There exists an integer n > 0 and a global section s ∈ Γ(X,L⊗n) such that the open
Xs is non-empty and there exists an integral domain R and a morphism

Xs → Spec(R)

whose generic fiber (Xs)K is quasi-affine where K = Frac(R).

If X is a proper variety, then they are further equivalent to:

4.L is big, i.e., there exist constants m0, C > 0 such that dimk Γ(X,L⊗m0m) > C ·mdimX

for any m ≫ 0.

Definition 5Let X be an integral qcqs scheme. A line bundle L is big if the equivalent
conditions 1-3 hold.

Our main theorem indeed holds in the generality of noetherian schemes with this notion of
big line bundles. A proof of the main theorem goes as follows: (1 ⇒ 2) It is easy to see
⊗-amplitude is preserved under quasi-affine pullbacks, so it suffices to show a ⊗-ample line
bundle on an integral closed subscheme is big or anti-big. Indeed, ⊗-amplitude provides a
desired section. (2 ⇒ 1) We can show if there exists n ̸= 0 and a global section s ∈ Γ(X,L⊗n)
such that Xs is quasi-affine and L|V (sr) is ⊗-ample for each r ≥ 0, then L is ⊗-ample. Now
we can conclude by noetherian induction.

Consequences of the main theorem

Interestingly we have not found a direct proof to the following fundamental facts.

Lemma 6Let L be a line bundle on a noetherian scheme X. Let 0 ̸= n ∈ Z. Let
f : Y → X be a finite surjective morphism of schemes.

1.L is ⊗-ample if and only if L⊗n is ⊗-ample.

2.L is ⊗-ample if and only if the restriction of L to the irreducible components of X
(with the reduced subscheme structure) are ⊗-ample.

3.L is ⊗-ample if and only if f ∗L is ⊗-ample.

In practice, the following seems to be a useful way to check if a line bundle is ⊗-ample.

Lemma 7Let X be a noetherian scheme and L a line bundle on X. Let n1, . . . , nk ∈ Z
be integers and si ∈ Γ(X,L⊗ni) global sections. Assume:

1.Xsi have ⊗-ample structure sheaf (for example if each Xsi is quasi-affine).

2. The restriction of L to the reduced closed subscheme V (s1, . . . , sk)red ⊂ X cut out
by s1, . . . , sk is ⊗-ample.

Then L is ⊗-ample.

⊗-ample cone in N1(X)

Our main theorem allows numerical studies of ⊗-ample line bundles.

Definition 8Let X be a proper variety. We say an R-Cartier divisor on X is ⊗-
ample if its restriction to any closed subvariety is linearly equivalent to a big or
anti-big R-Cartier divisor. Let

⊗-Amp(X) ⊂ N 1(X) = Div(X)R/ ≡num

denote the cone of ⊗-ample R-Cartier divisors up to numerical equivalence.

Lemma 9Let X be a proper variety.

•A Cartier divisor is ⊗-ample if and only if its numerical class lies in ⊗-Amp(X).

•⊗-Amp(X) ∩ Nef(X) = Amp(X). In particular, ⊗-Amp(X) ∩ ∂Nef(X) = ∅.

Note ⊗-Amp(X) is indeed computable. Let π : X = PX(E) → C be a ruled surface over
a projective curve C. Suppose E is unstable with a destabilizing quotient E ↠ Q, which
corresponds to a section C0 ⊂ X . Then, we get a complete description of cones in N 1(X).

R+f

R+[C0] R+(ξ − µf )R+ξ R+[−KX]

f = [fiber of π], ξ = [OP(E)(1)] ∈ N 1(X)

µ = degQ, d = deg E , g = g(C)

[C0] = ξ + (µ− d)f, [KX] = −2ξ + (2g − 2 + d)f

Amp(X)

⊗-Amp+(X) \ Amp(X)

Nef(X) = ⟨R+(ξ − µf ),R+f⟩
PsEff(X) = ⟨R+[C0],R+f⟩

Here, ⊗-Amp+(X) = ⊗-Amp(X) ∩ Big(X).

Examples of ⊗-ample line bundles

The following completely answer Question 3 for smooth projective surfaces.

Lemma 10A line bundle L on a proper surface is ⊗-ample if and only if degL|C ̸= 0
for every integral closed curve C ⊂ X with C2 < 0. Moreover,

⊗-Amp+(X) = Big(X) \
⋃

{C⊥ : C ⊂ X an integral curve with C2 < 0}.

Lemma 11A smooth projective surface X has a ⊗-ample but neither ample nor anti-
ample line bundle if and only if there is an integral curve C ⊂ X with C2 < 0.

Other types of examples include but not limited to the following.

•Let X be a quasi-projective variety and let π : X → Y be the blow-up at finitely many
points with corresponding exceptional divisors Ei. Then for any ample line bundle L and
for any li > 0, π∗L ⊗

⊗
OX(liEi) is is neither ample nor anti-ample, but ⊗-ample.

•Let X = Bl(0,0)A2
k \{p} where p is a k-point of an exceptional divisor. Then the structure

sheaf OX is ⊗-ample but not ample. In particular, being quasi-projective and having a
⊗-ample structure sheaf do not imply being quasi-affine.

•The affine space with doubled origin has the⊗-ample structure sheaf. In particular, having
a ⊗-ample line bundle does not imply neither separated nor having a resolution property.

• If X is a union of two copies of P1 glued along a node and L is obtained by gluing O(1)
on one copy with O(−1) on the other, then L is ⊗-ample.

•Hironaka’s example of a non-projective proper variety has a ⊗-ample line bundle.

Examples of ⊗-ample canonical bundles

Some of the previous examples provide varieties with ⊗-ample (but neither ample nor anti-
ample) canonical bundle, to which we can apply Theorem 2.

•For a smooth projective surface X , ωX is ⊗-ample if and only if ωX is big or anti-big
and X contains no (−2)-curve. For example, a smooth projective toric surface with no
(−2)-curve, a projective bundle of an unstable rank 2 vector bundle over an elliptic curve,
and the blow-up of P2 at r points on a line with r ̸= 3 have ⊗-ample canonical bundles.

• If X is a quasi-projective variety with ample canonical bundle (e.g. a quasi-affine variety),
then its blow-up at finitely many closed points has a ⊗-ample canonical bundle.

•Take the Fermat hypersurface X = {xd0 + · · · + xd4 = 0} ⊂ P4
k with odd d > 5. Then,

there is a line l ⊂ X with normal bundle Ol(1)⊕Ol(2−d). Then the blow-up of X along
the line l has a ⊗-ample canonical bundle.

•A proper toric variety has a ⊗-ample canonical bundle if and only if the restriction of the
canonical line bundle to the torus boundary divisor is ⊗-ample.
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