Positivity of line bundles in derived categories Daigo Ito (University of California, Berkeley) joint work with Noah Olander (UC Berkeley) #### Motivation Using the theory of Matsui spectra, the reconstruction theorem of Bondal-Orlov was recently generalized to the following setting. **Definition 1** A line bundle \mathcal{L} is said to be \otimes -ample if $\langle \mathcal{L}^{\otimes n} \mid n \in \mathbb{Z} \rangle = \operatorname{Perf} X$. On a quasi-projective variety, any (anti-)ample line bundle is \otimes -ample. **Theorem 2 (Ito-Matsui, Ito)** Let X be a Gorenstein proper variety with \otimes -ample canonical bundle ω_X . Then, the following assertions hold: - X can be reconstructed from the triangulated category structure of Perf X; - If we have $\operatorname{Perf} X \simeq \operatorname{Perf} Y$ with a variety Y, then $X \cong Y$. Here, note we do not require any projectivity, which is more natural from a dg-categorical perspective. Now, a natural question is whether or not this is actually a generalization. **Question 3** Are there \otimes -ample line bundles that are neither ample nor anti-ample? **Main Theorem (Ito-Olander)** Let X be a proper variety and \mathcal{L} a line bundle. TFAE: - 1. \mathcal{L} is \otimes -ample. - 2. $\mathcal{L}|_Z$ is big or anti-big for every closed integral subscheme $Z \subset X$. The theorem provides a variety of examples and well-behaved theory of \otimes -ample line bundles. ### Big line bundles and affine complements A key technical ingredient is the following characterization of big line bundles, which is interesting in its own right in relation to divisors with affine complements. **Proposition 4** Let X be an integral qcqs scheme and \mathcal{L} a line bundle. TFAE: - 1. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open $X_s := \{s \neq 0\} = X \setminus V(s)$ is non-empty and quasi-affine. - 2. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open X_s is non-empty and affine. - 3. There exists an integer n > 0 and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that the open X_s is non-empty and there exists an integral domain R and a morphism $$X_s \to \operatorname{Spec}(R)$$ whose generic fiber $(X_s)_K$ is quasi-affine where $K = \operatorname{Frac}(R)$. - If X is a proper variety, then they are further equivalent to: - 4. \mathcal{L} is big, i.e., there exist constants $m_0, C > 0$ such that $\dim_k \Gamma(X, \mathcal{L}^{\otimes m_0 m}) > C \cdot m^{\dim X}$ for any $m \gg 0$. **Definition 5** Let X be an integral qcqs scheme. A line bundle \mathcal{L} is **big** if the equivalent conditions 1-3 hold. Our main theorem indeed holds in the generality of noetherian schemes with this notion of big line bundles. A proof of the main theorem goes as follows: $(1 \Rightarrow 2)$ It is easy to see \otimes -amplitude is preserved under quasi-affine pullbacks, so it suffices to show a \otimes -ample line bundle on an integral closed subscheme is big or anti-big. Indeed, \otimes -amplitude provides a desired section. $(2 \Rightarrow 1)$ We can show if there exists $n \neq 0$ and a global section $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ such that X_s is quasi-affine and $\mathcal{L}|_{V(s^r)}$ is \otimes -ample for each $r \geq 0$, then \mathcal{L} is \otimes -ample. Now we can conclude by noetherian induction. ### Consequences of the main theorem Interestingly we have not found a direct proof to the following fundamental facts. **Lemma 6** Let \mathcal{L} be a line bundle on a noetherian scheme X. Let $0 \neq n \in \mathbb{Z}$. Let $f: Y \to X$ be a finite surjective morphism of schemes. - $\mathcal{L}. \mathcal{L} \ is \otimes \text{-ample} \ if \ and \ only \ if \ \mathcal{L}^{\otimes n} \ is \otimes \text{-ample}.$ - 2. \mathcal{L} is \otimes -ample if and only if the restriction of \mathcal{L} to the irreducible components of X (with the reduced subscheme structure) are \otimes -ample. - 3. \mathcal{L} is \otimes -ample if and only if $f^*\mathcal{L}$ is \otimes -ample. In practice, the following seems to be a useful way to check if a line bundle is \otimes -ample. **Lemma 7** Let X be a noetherian scheme and \mathcal{L} a line bundle on X. Let $n_1, \ldots, n_k \in \mathbb{Z}$ be integers and $s_i \in \Gamma(X, \mathcal{L}^{\otimes n_i})$ global sections. Assume: - 1. X_{s_i} have \otimes -ample structure sheaf (for example if each X_{s_i} is quasi-affine). - 2. The restriction of \mathcal{L} to the reduced closed subscheme $V(s_1, \ldots, s_k)_{red} \subset X$ cut out by s_1, \ldots, s_k is \otimes -ample. - Then \mathcal{L} is \otimes -ample. ## \otimes -ample cone in $N^1(X)$ Our main theorem allows numerical studies of \otimes -ample line bundles. **Definition 8** Let X be a proper variety. We say an \mathbb{R} -Cartier divisor on X is \otimes ample if its restriction to any closed subvariety is linearly equivalent to a big or anti-big \mathbb{R} -Cartier divisor. Let $$\otimes$$ -Amp $(X) \subset N^1(X) = \text{Div}(X)_{\mathbb{R}} / \equiv_{\text{num}}$ denote the cone of \otimes -ample \mathbb{R} -Cartier divisors up to numerical equivalence. Lemma 9 Let X be a proper variety. - A Cartier divisor is \otimes -ample if and only if its numerical class lies in \otimes -Amp(X). - $\bullet \otimes \operatorname{-Amp}(X) \cap \operatorname{Nef}(X) = \operatorname{Amp}(X)$. In particular, $\otimes \operatorname{-Amp}(X) \cap \partial \operatorname{Nef}(X) = \emptyset$. Note \otimes -Amp(X) is indeed computable. Let $\pi: X = \mathbb{P}_X(\mathcal{E}) \to C$ be a ruled surface over a projective curve C. Suppose \mathcal{E} is unstable with a destabilizing quotient $\mathcal{E} \to \mathcal{Q}$, which corresponds to a section $C_0 \subset X$. Then, we get a complete description of cones in $N^1(X)$. Here, \otimes -Amp₊ $(X) = \otimes$ -Amp $(X) \cap Big(X)$. ### Examples of \otimes -ample line bundles The following completely answer Question 3 for smooth projective surfaces. **Lemma 10** A line bundle \mathcal{L} on a proper surface is \otimes -ample if and only if $\deg \mathcal{L}|_C \neq 0$ for every integral closed curve $C \subset X$ with $C^2 < 0$. Moreover, $$\otimes$$ -Amp₊ $(X) = Big(X) \setminus \bigcup \{C^{\perp} : C \subset X \text{ an integral curve with } C^2 < 0\}.$ **Lemma 11** A smooth projective surface X has a \otimes -ample but neither ample nor antiample line bundle if and only if there is an integral curve $C \subset X$ with $C^2 < 0$. Other types of examples include but not limited to the following. - Let X be a quasi-projective variety and let $\pi: X \to Y$ be the blow-up at finitely many points with corresponding exceptional divisors E_i . Then for any ample line bundle \mathcal{L} and for any $l_i > 0$, $\pi^* \mathcal{L} \otimes \bigotimes \mathcal{O}_X(l_i E_i)$ is is neither ample nor anti-ample, but \otimes -ample. - Let $X = \text{Bl}_{(0,0)} \mathbb{A}^2_k \setminus \{p\}$ where p is a k-point of an exceptional divisor. Then the structure sheaf \mathcal{O}_X is \otimes -ample but not ample. In particular, being quasi-projective and having a \otimes -ample structure sheaf do not imply being quasi-affine. - The affine space with doubled origin has the \otimes -ample structure sheaf. In particular, having a \otimes -ample line bundle does not imply neither separated nor having a resolution property. - If X is a union of two copies of \mathbf{P}^1 glued along a node and \mathcal{L} is obtained by gluing $\mathcal{O}(1)$ on one copy with $\mathcal{O}(-1)$ on the other, then \mathcal{L} is \otimes -ample. - Hironaka's example of a non-projective proper variety has a \otimes -ample line bundle. ## Examples of ⊗-ample canonical bundles Some of the previous examples provide varieties with \otimes -ample (but neither ample nor antiample) canonical bundle, to which we can apply Theorem 2. - For a smooth projective surface X, ω_X is \otimes -ample if and only if ω_X is big or anti-big and X contains no (-2)-curve. For example, a smooth projective toric surface with no (-2)-curve, a projective bundle of an unstable rank 2 vector bundle over an elliptic curve, and the blow-up of \mathbb{P}^2 at r points on a line with $r \neq 3$ have \otimes -ample canonical bundles. - If X is a quasi-projective variety with ample canonical bundle (e.g. a quasi-affine variety), then its blow-up at finitely many closed points has a \otimes -ample canonical bundle. - Take the Fermat hypersurface $X = \{x_0^d + \cdots + x_4^d = 0\} \subset \mathbb{P}_k^4$ with odd d > 5. Then, there is a line $l \subset X$ with normal bundle $\mathcal{O}_l(1) \oplus \mathcal{O}_l(2-d)$. Then the blow-up of X along the line l has a \otimes -ample canonical bundle. - A proper toric variety has a \otimes -ample canonical bundle if and only if the restriction of the canonical line bundle to the torus boundary divisor is \otimes -ample. ### References - D. Ito and H. Matsui, A new proof of the Bondal-Orlov reconstruction theorem using Matsui spectra (to appear in Bull. Lond. Math. Soc.) - D. Ito, Polarizations on a triangulated category (available at arXiv:2502.15621) - D. Ito and N. Olander, On ⊗-ample line bundles (coming soon)