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Motivation

Balmer’s tensor triangular geometry says information of an algebraic
variety X in the perfect derived category Perf X is fully encoded in
the tensor triangulated structure ⊗L

OX
.

Ambitious Question

Can we characterize ⊗L
OX

in the “moduli space” of tt-structures on
Perf X?

A much more tractable but already interesting first question is:

Question
What kinds of tt-structures does Perf Pn have?

We will see for any finite dimensional algebra A, there is a
“convolution-like” tt-structure ?A on Perf P(A).
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Derived quiver representations
We begin with a motivating case, where A = kn+1 with
coordinate-wise multiplication.

Theorem (Beilinson ’78)

T = OPn ⊕ · · · ⊕ OPn(n) is a tilting object in Perf Pn.

This allows us to view

Perf Pn ' Db mod(End(T )) ' Db rep(Beiln),

where Db Rep(Beiln) is the bounded derived category of finite
dimensional quiver representations on the n-Beilinson quiver

Beiln =
0• 1• · · · n−1• n•

x0
x1

xn

xn−1

x0
x1

xn

xn−1

x0
x1

xn

xn−1

x0
x1

xn

xn−1

with relation xixj = xjxi .
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Quiver tensor product

Let’s look at P1 for simplicity. Beil1 is the Kronecker quiver

• •

We can define a tensor product of two quiver representations

V =

(
V0 V1f1

f0

)
, W =

(
W0 W1g1

g0
)

by setting

V ⊗quiv W :=

(
V0 ⊗W0 V1 ⊗W1f1⊗g1

f0⊗g0
)
.

This defines a tt-category (Perf P1,⊗quiv). Let’s try to understand
⊗quiv through some examples!
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Examples

Under the equivalence Perf P1 ' Db rep(Beil1), we have

k([x0 : x1])↔
(

k k
x1

x0
)
, OP1 ↔

(
0 k

)
.

Thus, the unit of ⊗quiv is k([1 : 1]) and we have

k([x0 : x1])⊗quiv k([y0 : y1]) = k([x0y0 : x1y1])

when the RHS makes sense. On the other hand,

k([1 : 0])⊗quiv k([0 : 1]) =
(

k k
0

0
)

= OPn ⊕ OP1(−1)[1].

Thus, although ⊗quiv looks like a convolution, but it is not quite as
Pn is not a monoid...
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Window theory (very special case)

One way to fix this is to “embed” Pn into a monoid (stack). Recall
we have Pn = [(An+1 \ {0})/Gm]⊂[An+1/Gm] =: X.

Theorem (Halpern-Leistner, Ballard-Favero-Katzarkov’12)

There is a fully faithful embedding w : Dqc(Pn) ↪→ Dqc(X), called the
window, that restricts to a fully faithful embedding
Perf Pn = 〈OPn , . . . ,OPn(n)〉 ' 〈OX, . . . ,OX(n)〉 ⊂ Perf X.

Note w 6∼= Li∗ and Dqc(X)(' D Modgr(k[x0, . . . , xn])) has the
convolution tensor product (or the Z-graded tensor product over k)

(F,G) 7→ Rµ∗(p∗1F ⊗L
X×X p∗2G) =: F ?conv G

where µ, p1, p2 : X× X→ X are the coordinate-wise multiplication
and projections, respectively.
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Quiver tensor product on a “big quiver”

We define the “big” Beilinson quiver to be

Beil∞n = · · · −1• 0• · · · n• n+1• · · ·
x0
x1

xn

xn−1

x0
x1

xn

xn−1

x0
x1

xn

xn−1

x0
x1

xn

xn−1

with relation xixj = xjxi . Note D Rep(Beil∞n ) has ⊗quiv as before.

Theorem (I.-Nolan)

There is a symmetric monoidal equivalence

(Dqc(X), ?conv) ' (D Rep(Beil∞n ),⊗quiv).
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Hitchcock functor and main theorem

Proposition

The right adjoint of the window w : Dqc(Pn) ↪→ Dqc(X) is given by
the restriction of quiver representations along Beiln ⊂ Beil∞n

Hw : Dqc(X) ' D Rep(Beil∞n )→ D Rep(Beiln) ' Dqc(Pn)

We call Hw the Hitchcock functor as it looks into Dqc(Pn) through
the window.

Theorem (I.-Nolan)

The quiver tensor product ⊗quiv on Dqc(Pn) is a unique symmetric
monoidal structure such that the Hitchcock functor
Hw : (Dqc(X), ?conv)→ (Dqc(Pn),⊗quiv) is symmetric monoidal.
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Extended convolutions and compactification

Our main theorem holds more generally (more general than below).

Theorem (I.-Nolan)

Let A be a finite-dimensional En-algebra. Then, Dqc(P(A)) has a
unique En-monoidal structure ?A such that the Hitchcock functor is
En-monoidal. Moreover, ?A restricts to a tt-structure on Perf P(A).

Corollary

For any open submonoid M
i
↪→ P(A) ⊂ [A(A)/Gm],

Ri∗ : (Dqc(M), ?conv) ↪→ (Dqc(P(A)),⊗A) is En-monoidal.

In particular, we may think of (Perf(P(A)), ?A) as a “categorical
compactification” of M in [A(A)/Gm].
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Examples and geometric remarks

Example
1 For A = k2, (Perf P1, ?quiv) compactifies Gm.

2 For A = k[ε]/ε2, (Perf P1, ?A) compactifies Ga = A1.

3 More generally, for a finite dimensional algebra B ,
(Perf P(B × k), ?B×k) compactifies B .

4 For A = Matn×n(k), (Perf Pn2−1, ?A) “compactifies” PGLn(k).

This story works for any proper toric variety with a strong full
exceptional collection of line bundles.

If we know the resolution of diagonal for these toric varieties, we
can explicitly compute the Fourier-Mukai kernel for the extended
convolution product.
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Thank you for your attention!
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