TT-structures arising from quiver representations and extended convolution products on toric varieties

Daigo Ito joint work with John S. Nolan

University of California, Berkeley

Derived Representation Theory and Triangulated Categories Aristotle University of Thessaloniki, June 26, 2025

Motivation

Balmer's tensor triangular geometry says information of an algebraic variety X in the perfect derived category Perf X is fully encoded in the tensor triangulated structure $\bigotimes_{O_X}^{\mathbb{L}}$.

Ambitious Question

Can we characterize $\otimes_{\mathcal{O}_X}^{\mathbb{L}}$ in the "moduli space" of tt-structures on Perf X?

A much more tractable but already interesting first question is:

Question

What kinds of tt-structures does Perf \mathbb{P}^n have?

We will see for any finite dimensional algebra A, there is a "convolution-like" tt-structure \star_A on Perf $\mathbb{P}(A)$.

Derived quiver representations

We begin with a motivating case, where $A = k^{n+1}$ with coordinate-wise multiplication.

Theorem (Beilinson '78)

 $\mathcal{T} = \mathcal{O}_{\mathbb{P}^n} \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^n}(n)$ is a tilting object in Perf \mathbb{P}^n .

This allows us to view

Perf
$$\mathbb{P}^n \simeq \mathsf{D}^b \operatorname{mod}(\operatorname{End}(\mathcal{T})) \simeq \mathsf{D}^b \operatorname{rep}(\operatorname{Beil}_n),$$

where $D^{b} \operatorname{Rep}(\operatorname{Beil}_{n})$ is the bounded derived category of finite dimensional quiver representations on the *n*-Beilinson quiver

with relation $x_i x_j = x_j x_i$.

Quiver tensor product

Let's look at \mathbb{P}^1 for simplicity. Beil₁ is the Kronecker quiver

We can define a tensor product of two quiver representations

$$V = \left(\begin{array}{cc} V_0 & -f_0 \rightarrow \\ -f_1 \rightarrow \end{array} & V_1 \end{array} \right), \quad W = \left(\begin{array}{cc} W_0 & -g_0 \rightarrow \\ -g_1 \rightarrow \end{array} & W_1 \end{array} \right)$$

by setting

$$V \otimes_{quiv} W := \left(\begin{array}{cc} V_0 \otimes W_0 & \stackrel{---f_0 \otimes g_0}{\longrightarrow} & V_1 \otimes W_1 \end{array}
ight).$$

This defines a tt-category (Perf $\mathbb{P}^1, \otimes_{quiv}$). Let's try to understand \otimes_{quiv} through some examples!

Examples

Under the equivalence $\operatorname{Perf} \mathbb{P}^1 \simeq \mathsf{D}^b \operatorname{rep}(\operatorname{Beil}_1)$, we have

$$k([x_0:x_1]) \leftrightarrow \left(\begin{array}{c}k \xrightarrow{-x_0 \to} k \\ -x_1 \to \end{array}\right), \ \mathfrak{O}_{\mathbb{P}^1} \leftrightarrow \left(\begin{array}{c}0 \xrightarrow{\longrightarrow} k \end{array}\right).$$

Thus, the unit of \otimes_{quiv} is k([1:1]) and we have

$$k([x_0:x_1]) \otimes_{quiv} k([y_0:y_1]) = k([x_0y_0:x_1y_1])$$

when the RHS makes sense. On the other hand,

$$k([1:0])\otimes_{\mathsf{quiv}}k([0:1])=\left(egin{array}{c}k&-0 o\ -0 o\ k\end{array}
ight)=\mathfrak{O}_{\mathbb{P}^n}\oplus\mathfrak{O}_{\mathbb{P}^1}(-1)[1].$$

Thus, although \otimes_{quiv} looks like a convolution, but it is not quite as \mathbb{P}^n is not a monoid...

Window theory (very special case)

One way to fix this is to "embed" \mathbb{P}^n into a monoid (stack). Recall we have $\mathbb{P}^n = [(\mathbb{A}^{n+1} \setminus \{0\})/\mathbb{G}_m] \subset [\mathbb{A}^{n+1}/\mathbb{G}_m] =: \mathfrak{X}.$

Theorem (Halpern-Leistner, Ballard-Favero-Katzarkov'12) There is a fully faithful embedding $w : D_{qc}(\mathbb{P}^n) \hookrightarrow D_{qc}(\mathfrak{X})$, called the window, that restricts to a fully faithful embedding Perf $\mathbb{P}^n = \langle \mathbb{O}_{\mathbb{P}^n}, \dots, \mathbb{O}_{\mathbb{P}^n}(n) \rangle \simeq \langle \mathbb{O}_{\mathfrak{X}}, \dots, \mathbb{O}_{\mathfrak{X}}(n) \rangle \subset \text{Perf } \mathfrak{X}.$

Note $w \not\cong \mathbb{L}i_*$ and $\mathsf{D}_{qc}(\mathfrak{X})(\simeq \mathsf{D} \operatorname{Mod}^{\operatorname{gr}}(k[x_0, \ldots, x_n]))$ has the convolution tensor product (or the \mathbb{Z} -graded tensor product over k)

$$(\mathfrak{F},\mathfrak{G})\mapsto \mathbb{R}\mu_*(p_1^*\mathfrak{F}\otimes^{\mathbb{L}}_{\mathfrak{X}\times\mathfrak{X}}p_2^*\mathfrak{G})=:\mathfrak{F}\star_{\operatorname{conv}}\mathfrak{G}$$

where μ , p_1 , p_2 : $\mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ are the coordinate-wise multiplication and projections, respectively.

Quiver tensor product on a "big quiver"

We define the "big" Beilinson quiver to be

$$\mathsf{Beil}_n^{\infty} = \cdots \stackrel{-1}{\bullet} \begin{array}{ccc} -x_0 \rightarrow & -x_0 \rightarrow & -x_0 \rightarrow & -x_0 \rightarrow \\ -x_1 \rightarrow & 0 & -x_1 \rightarrow & -x_1 \rightarrow & n & -x_1 \rightarrow & n+1 \\ \bullet & \cdots & \bullet & \cdots & \bullet & \bullet & \cdots \\ -x_{n-1} \rightarrow & -x_n \rightarrow & -x_n \rightarrow & -x_n \rightarrow & -x_n \rightarrow \end{array}$$

with relation $x_i x_j = x_j x_i$. Note $D \operatorname{Rep}(\operatorname{Beil}_n^{\infty})$ has \otimes_{quiv} as before.

Theorem (I.-Nolan)

There is a symmetric monoidal equivalence

$$(\mathsf{D}_{\mathsf{qc}}(\mathfrak{X}), \star_{\mathsf{conv}}) \simeq (\mathsf{D}\operatorname{\mathsf{Rep}}(\operatorname{\mathsf{Beil}}_n^\infty), \otimes_{\operatorname{\mathsf{quiv}}}).$$

Hitchcock functor and main theorem

Proposition

The right adjoint of the window $w : D_{qc}(\mathbb{P}^n) \hookrightarrow D_{qc}(\mathfrak{X})$ is given by the restriction of quiver representations along $\operatorname{Beil}_n \subset \operatorname{Beil}_n^{\infty}$

 $H_w: \mathsf{D}_{\mathsf{qc}}(\mathfrak{X}) \simeq \mathsf{D}\operatorname{\mathsf{Rep}}(\mathsf{Beil}_n^\infty) \to \mathsf{D}\operatorname{\mathsf{Rep}}(\mathsf{Beil}_n) \simeq \mathsf{D}_{\mathsf{qc}}(\mathbb{P}^n)$

We call H_w the Hitchcock functor as it looks into $D_{qc}(\mathbb{P}^n)$ through the window.

Theorem (I.-Nolan)

The quiver tensor product \otimes_{quiv} on $D_{qc}(\mathbb{P}^n)$ is a unique symmetric monoidal structure such that the Hitchcock functor $H_w : (D_{qc}(\mathfrak{X}), \star_{conv}) \to (D_{qc}(\mathbb{P}^n), \otimes_{quiv})$ is symmetric monoidal.

Extended convolutions and compactification

Our main theorem holds more generally (more general than below).

Theorem (I.-Nolan)

Let A be a finite-dimensional \mathbb{E}_n -algebra. Then, $D_{qc}(\mathbb{P}(A))$ has a unique \mathbb{E}_n -monoidal structure \star_A such that the Hitchcock functor is \mathbb{E}_n -monoidal. Moreover, \star_A restricts to a tt-structure on Perf $\mathbb{P}(A)$.

Corollary

For any open submonoid $M \stackrel{i}{\hookrightarrow} \mathbb{P}(A) \subset [\mathbb{A}(A)/\mathbb{G}_m]$, $\mathbb{R}i_* : (\mathsf{D}_{qc}(M), \star_{conv}) \hookrightarrow (\mathsf{D}_{qc}(\mathbb{P}(A)), \otimes_A)$ is \mathbb{E}_n -monoidal.

In particular, we may think of $(Perf(\mathbb{P}(A)), \star_A)$ as a "categorical compactification" of M in $[\mathbb{A}(A)/\mathbb{G}_m]$.

Examples and geometric remarks

Example

• For
$$A = k^2$$
, (Perf $\mathbb{P}^1, \star_{quiv}$) compactifies \mathbb{G}_m .

- For $A = k[\varepsilon]/\varepsilon^2$, (Perf \mathbb{P}^1, \star_A) compactifies $\mathbb{G}_a = \mathbb{A}^1$.
- More generally, for a finite dimensional algebra B, (Perf ℙ(B × k), ⋆_{B×k}) compactifies B.

• For
$$A = Mat_{n \times n}(k)$$
, (Perf $\mathbb{P}^{n^2-1}, \star_A$) "compactifies" $PGL_n(k)$.

- This story works for any proper toric variety with a strong full exceptional collection of line bundles.
- If we know the resolution of diagonal for these toric varieties, we can explicitly compute the Fourier-Mukai kernel for the extended convolution product.

Thank you for your attention!