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Abstract
Our goal is to compute resolution of various types of singularity with a view towards the minimal model
program. This thesis contains a general overview of the minimal model program together with practical
techniques to deal with specific varieties and singularities. Thoroughly explained examples include the affine
quadric cone, Del Pezzo surfaces, the cone over the Veronese surface, and Du Val singularities. At the end,
we will observe a specific example of a resolution of a cDV singularity. Throughout the thesis, I also put
emphasis on clearly stating techniques and results that are often taken for granted by people with working
knowledge.
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Introduction

Our goal is to compute resolution of various types of singularities with a view towards the minimal model
program. This thesis contains a general overview of the minimal model program together with many working
techniques through various examples to practically deal with specific varieties and singularities.

In Chapter 1, I explain concepts related to normal varieties and introduce my favorite example “the affine
quadric cone”. Normal varieties provide a huge class of singular varieties, but they are still fairly similar to
non-singular varieties in the sense that we can generalize many notions and results for non-singular varieties
to normal varieties. (Indeed, they are equivalent for curves!) Hence, in this thesis, we will focus on study
of singularities in normal varieties. To get familiar with normal varieties, I first explain geometric intuitions
of them via Serre’s normality criterion (Corollary 1.1.10) and then introduce a notion of a local complete
intersection to provide a tool to show that a given variety is normal in practice (Example 1.2.7,1.2.15). Then,
I move on to generalization of concepts defined in the non-singular case to the normal case. Here, I refer
to Appendix A a lot, where I summarize standard facts about divisors. In particular, we see why a normal
variety is a suitable setting to talk about divisors while discussing what kind of modifications we need due
to an unfortunate fact that Weil divisors are not necessarily Cartier on normal varieties (Lemma A.1.10).
Finally, we apply previous definitions and arguments to the affine quadric cone (§1.4), which is one of the
simplest singular varieties, but clearly illustrates our departure from the non-singular category. Here, I also
introduce a lot of useful techniques that will be used again and again throughout the thesis.

In Chapter 2, I give an overview of the minimal model program. The whole story begins with Casteln-
uovo’s contraction theorem (Theorem 2.0.3), which claims that we can smoothly blow-down any (−1)-curve
in a non-singular surface, i.e. any (−1)-curve in a non-singular surface can be regarded as the exceptional
divisor of the blow-up of a smooth surface at a point. One of the nicest things about this result is that the
resultant surface is still non-singular despite the fact that intuitively contraction of a curve into a point in-
troduces a singularity. Now, by contracting all the (−1)-curves to points, we obtain a surface with a simpler
global structure, which is called a relatively minimal model. Although this naive notion needs to be modified
a little bit to define “genuine” minimal models, the modifications give us satisfactory results in the surface
minimal model program (Construction 2.1.11). Most importantly for us, everything has been done in the
smooth category. However, if we try to generalize the surface minimal model program to 3-folds, we face
the problem that some contractions of curves inevitably introduce singularities in the resultant variety (The-
orem 2.2.1). Here, we need to start thinking about singularity. In the rest of Chapter 2, I introduce several
notions to describe how singular a singularity is, motivate some examples (Example 2.2.13) in the following
chapters, and finally give a strategy of the higher dimensional minimal model program (Construction 2.2.16).

In chapter 3 and 4, we work on resolutions of various types of singularities. After introducing notions
to describe singularities locally, we consider some standard examples of surface singularities such as the
origin of the affine cone of a non-singular projective hypersurface (Lemma 3.2.5) and the vertex of quotient
varieties (Example 3.3.5) by recalling techniques in our first example “the affine quadric cones”. Then, we
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deal with a little bit more complicated surface singularities, so called Du Val singularities. I thoroughly
worked through the step-by-step process of resolutions (Lemma 3.4.3). Finally, in Chapter 4, we will deal
with 3-fold singularities, so called compound Du Val singularities with an introduction to weighted blow-ups.

Throughout the thesis, I also put emphasis on clearly stating results and techniques (e.g. Lemma 1.1.9,
§1.2, §1.4, §4.1, Lemma 4.1.8.2), which are often taken for granted by people with working knowledge.

In this thesis, we use the following notations and definitions.

Notation 0.0.1.
(i) The end of a claim is marked with▬ and the end of a proof is marked with▭.

(ii) I will use indented versions of claims with ends marked with ◾. The end of a proof for a indented
claim is indicated by ◽.

(iii) ℂ, ℝ, ℚ, ℤ denote the fields of complex numbers, real numbers, rational numbers, and the ring of
integers, respectively. Furthermore, ℤ>0 denotes the set of positive integers andℝ≥0 denotes the set of
non-negative real numbers. Also, k denotes an algebraically closed field and R denotes a ring unless
otherwise specified.

(iv) For f ∈ k[x1,… , xn], {f = 0} (or just f = 0) denotes the scheme Spec k[x1,… , xn]∕⟨f⟩.

▬

Definition 0.0.2.
(i) A variety is a separated scheme of finite type over a field. In this thesis, we suppose that a variety
is integral (i.e. reduced and irreducible) and over ℂ unless otherwise specified.

(ii) A curve, surface, and 3-fold are varieties of dimension 1, 2, and 3, respectively. In particular, we
assume these are integral unless otherwise specified (by equations).

(iii) A closed subset all of whose irreducible components are of codimension 1 in an ambient scheme
X is said to be a hypersurface in X.

(iv) A variety X is non-singular (regular) if all of its local rings are regular. Note that a smooth
variety over a field k is always non-singular and the converse is true if k is a perfect field (e.g. fields
of characteristic 0, finite fields, algebraically closed fields, etc.) [Vak17, 12.2.10.]. Hence, I will not
distinguish smoothness from non-singularity in this thesis when working over ℂ.

(v) A point x ∈ X of a variety X is said to be a singularity if the local ring is not regular. A variety
is said to be a singular variety if it admits a singularity. A singularity x ∈ X is said to be isolated if
there exists an open neighborhood U of x such that x is the only singularity.

(vi) A (−1)-curve is a non-singular rational curve with self-intersection Y 2 = −1.

(vii) A rational map f ∶ X Y between schemes is an equivalence class of pairs (U,�) of an open
dense subset U ofX and a morphism � ∶ U → Y where (U,�) ∼ (V ,  ) if there exists an open dense
subsetW ⊂ U ∩ V such that �|W =  |W . The following is motivating and useful:

Lemma 0.0.2.1 (Reduced-to-Separated Theorem). [Vak17, 10.2.2.] Let f, g ∶ X → Y be morphisms
of schemes and suppose X is reduced and Y is separated. If f |U = g|U for an open dense subset
U ⊂ X, then f = g. In particular, for a rational map ℎ ∶ X Y , there exists a unique maximal
element in {V ⊂ X ∣ (V ,  ) represents ℎ}with respect to the inclusion relation. The maximal element
is called the domain of definition for ℎ and the complement is called the locus of indeterminacy. ◾
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(viii) Let f ∶ X → Y be a (dominant) morphism of irreducible schemes. Then, f is said to be a
birational morphism if f is a birational map, i.e. there exists a dominant rational map g ∶ Y X
such that g◦f = idX and f◦g = idY as rational maps. Note in particular that if X and Y are integral
and separated, then a birational morphism whose inverse is a morphism is an isomorphism.
Remark 0.0.2.2. In some literature (e.g. [Liu02]), a birational morphism f ∶ X → Y of integral
schemes over a scheme S is defined to be an S-morphism such that f #� ∶ K(Y ) → K(X) is an
isomorphism of function fields for the generic point � of X. These definitions are equivalent if X and
Y are of finite type over S. Thus, a birational morphism works well for integral and separated schemes
of finite type (e.g. varieties). ◾

It is often useful to consider a proper birational morphism for example by the following result:
Lemma 0.0.2.3. [Liu02, Corollary 4.4.3.] Let Y be a normal locally noetherian scheme, X
an integral scheme, and f ∶ X → Y a proper birational morphism.

(a) The canonical homomorphism Y → f∗X is an isomorphism.
(b) There exists an open subset V of Y such that f−1(V ) → V is an isomorphism, and Xy

has no isolated point. Furthermore, the complement of V has codimension ≥ 2.

◾

(ix) Let f ∶ X → Y be a birational morphism.

(a) The exceptional set Ex(f ) ⊂ X is the set of points x ∈ X where f (x) is in the locus of indeter-
minacy for f−1 ∶ Y X. We usually view Ex(f ) as a closed subscheme ofX with the induced
reduced structure.

(b) An f -exceptional divisor is a Weil divisor D on X such that f (SuppD) is of codimension ≥ 2
in Y .

▬



Chapter 1

Preliminaries

We will review some important results mainly regrading normal varieties and introduce an enlightening
example in §1.4.

1.1 Serre’s normality criterion
First, we are going to show a criterion for a locally noetherian scheme to be normal (Corollary 1.1.10), which
is helpful for intuition.

Definition 1.1.1 (Serre’s condition). Let R be a noetherian ring. Then, R is said to satisfy:

(i) Rn if Rp is regular for every prime ideal p in R with ht p = dimRp ≤ n.

(ii) Sn if depthRp ≥ min(dimRp, n) for all prime ideals p.
Definition 1.1.1.1. Let R be a ring, and I ⊂ R an ideal. Let M be a finitely generated
R-module. The I-depth depthI (M) is defined as follows:

(a) If IM ≠M , then depthI (M) is the supremum of the lengths ofM-regular sequences
in I , i.e. sequences r1,… , rd ∈ I such that ri is not a zero-divisor onM∕⟨r1,… , ri−1⟩M
for all i = 1,… , d andM∕⟨r1,… , rd⟩M ≠ 0.

(b) If IM =M , then depthI (M) = ∞.

If (R,m) is a local ring, then the depth ofM is depthM ∶= depthm(M). ◾

▬

Remark 1.1.2. For a general ring R and an R-module M , a reordering of an M-regular sequence is not
necessarily a regular sequence (e.g. [Vak17, 8.4.5.]). However, if (R,m) is a local regular ring and M is
a finitely generated R-module, then any M-regular sequence (in m) remains a regular sequence upon any
reordering (cf. [Vak17, 8.4.6.]). ▬

Example 1.1.3. [Mat87, p.183] Let R be a noetherian ring.

(i) Rn (resp. Sn) implies Rm (resp. Sm) for all n ≥ m.

4



1.1. SERRE’S NORMALITY CRITERION 5

(ii) S0 holds for any R.

(iii) S1 holds if and only if all the associated primes of R are minimal, i.e. R does not have embedded
associated primes.

(iv) If R is an integral domain, then S2 holds if and only if every prime divisor of a non-zero principal
ideal has height 1.

(v) If (R,m) is a local ring, then Sn holds for all n ≥ 0 if and only if R is Cohen-Macaulay, i.e.
depthR = dimR.

(vi) S1 and R0 hold if and only if R is reduced.

▬

Theorem 1.1.4 (Serre’s normality criterion). [Mat87, Theorem 23.8.] Let R be a noetherian ring. Then, R
is a normal ring if and only if S2 and R1 hold. ▬

Now, let us generalize this result to schemes.

Definition 1.1.5.

(i) A scheme X is Rn if every local ring X,x of dimension n is regular.

(ii) A scheme X is Sn if depthX,x ≥ min(dimX,x, n) for all x ∈ X.

▬

Example 1.1.6. A scheme X is R1 (regular in codimension one) if every local ring X,x of dimension 1
is regular, i.e. a DVR. ▬

Example 1.1.7. A locally noetherian scheme is said to be Cohen-Macaulay if it is Sn for all n ≥ 0. ▬

Example 1.1.8. Since normality is local, a locally noetherian scheme is normal if and only if it is R1 and S2
by Serre’s normality condition. ▬

Although the geometric meaning of R1 is clear, we want more geometric intuition for S2, which is given
in the following.

Lemma 1.1.9 (Algebraic Hartogs’s Lemma). Let X be a scheme. If X is S2, then for any closed subset
Y ⊂ X of codimension ≥ 2, the natural map X → �∗X⧵Y is an isomorphism where � ∶ X ⧵ Y ↪ X. In
particular, we have X(X) ≅ X(X ⧵ Y ), i.e. we can extend any regular function on the complement of a
codimension ≥ 2 closed subset to the whole, which is analogous to Hartogs’s lemma in complex geometry
(cf. [Vak17, 11.3.11.]). The converse holds if X is Cohen-Macaulay in codimension 1 (e.g. R1). ▬

Proof. The idea of the proof is due to Sándor Kovács’s answer to a mathoverflow question [Kova]. First,
note the following two claims from [Har67].

Lemma 1.1.9.1. [Har67, Proposition 1.11.] Let Y be a closed subset of a topological space X, let
 be a sheaf of abelian groups on X, and let n be an integer. Then, the following are equivalent:

(i) For all i ≤ n, HiY ( ) = 0, where H
i
Y ( ) is the cohomology sheaf of X with coefficients

in  and support in Z (cf. [Har67, pp.1-2]).

https://mathoverflow.net/q/46663
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(ii) For all open subsets U of X, the natural map

�i ∶ Hi(U, )→ Hi(U ∩ (X ⧵ Y ), )

is injective for i = 0 and an isomorphism for all i < n.

◾

Lemma 1.1.9.2. [Har67, Theorem 3.8.] Let X be a locally noetherian scheme, let Y be a closed
subset,  be a coherent sheaf on X, and let n be an integer. Then, the following are equivalent:

(i) For all i < n, HiY ( ) = 0.

(ii) depthY  ∶= infx∈Y depthx ≥ n.

◾

First, by the preceding lemmas note that for a closed subset Z ⊂ X, we have depthZ X ≥ 2 if and only
if the natural map X → �∗X⧵Z is an isomorphism. Hence, if X is S2, then depthY X ≥ 2 for any closed
subset Y of codimension 2 as desired. Conversely, suppose thatX is Cohen-Macaulay in codimension 1 and
that depthY X ≥ 2 for any closed subset Y of codimension 2. Choose a point x ∈ X. If dimX,x ≤ 1, then
depthX,x = dimX,x = min(2, dimX,x) by the first supposition. If dimx ≥ 2, then depthX,x ≥ 2 =
min(2, dimX,x) by the second supposition, which suffices for the proof. ▭

The preceding arguments can be summarized as follows:

Corollary 1.1.10. A locally noetherian scheme X is normal if and only if the following hold:

(R1): The singular locus of X is of codimension ≥ 2.

(S′2): For any closed subset Y ⊂ X of codimension ≥ 2, the natural map X → �∗X⧵Y is an isomor-
phism.

▬

1.2 Local complete intersection
Although Serre’s normality criterion offers some intuition for normal varieties, it would be nice to have
a more handy condition to actually check whether a variety is normal. Since the Jacobian criterion (e.g.
[Liu02, Theorem 4.2.19]) enables us to compute the singular locus, what we care is the S2 condition. By
definition, to see a variety is S2 it suffices to show that it is Cohen-Macaulay. For this purpose, we intro-
duce the notion of a local complete intersection, which implies Cohen-Macaulay and hence produces many
examples of S2 varieties (e.g. Example 1.2.5, 1.2.7, and 1.2.15). This section also serves to clarify the re-
lation between the algebraic notion (Definition 1.2.1) and the geometric notion (Definition 1.2.12) of a local
complete intersection.

Definition 1.2.1.

(i) A noetherian local ring (R,m) is said to be a complete intersection if its completion R̂ can be
written as the quotient of a regular local ring by an ideal generated by a regular sequence, i.e. if there
exists a surjective morphism A → R̂ with A a regular local ring such that the kernel is generated by a
regular sequence of R̂.
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(ii) A locally noetherian scheme (or a noetherian ring) is said to be a local complete intersection if all
of its local rings are complete intersections.

▬

Remark 1.2.2. Here are some reasons why we take the completion in the definition. First, note that for any
noetherian complete local ring (R,m), there exists a surjection A → R with A a regular local ring by the
Cohen structure theorem ([Sta21, Tag 032A]). Also, note that the fact that the kernel is generated by a regular
sequence does not depend on a choice of surjections ([Sta21, Tag 09PZ]). ▬

First of all, we have the following as desired.

Lemma 1.2.3. [Mat87, Theorem 18.1, Theorem 21.3.] For a noetherian local ring, we have the following
implications:

regular ⇒ complete intersection(⇒ Gorenstein)⇒ Cohen-Macaulay ⇒ Sn.

▬

Therefore, to check that a locally noetherian schemeX is S2, it suffices to show that every local ringX,x
is a complete intersection. Now, let us see examples of a complete intersection. First, the following sanity
check produces a lot of examples.

Lemma 1.2.4. [Sta21, Tag 09Q0] Let R be a regular ring and let p ⊂ R be a prime ideal. Suppose
f1,… , fl ∈ p is a regular sequence. Then, the localization

A = (R∕⟨f1,… , fl⟩R)p = Rp∕⟨f1,… , fl⟩Rp

is a complete intersection. ▬

The lemma follows because the completion of A is Â = R̂p∕⟨f1,… , fl⟩R̂p
and we can show that R̂p is

a regular local ring and the image of the sequence f1,… , fl is a regular sequence.

Example 1.2.5. For any regular ringR and a non-zero divisor f ∈ R, the quotient ringR∕⟨f ⟩ is a local com-
plete intersection. In particular, any subscheme of Ank (or ℙ

n) cut out by a single (homogeneous) polynomial
is a local complete intersection. ▬

Example 1.2.6. Let R = k[X1,… , Xn] and p = ⟨X1,… , Xn⟩. Then, R is in particular a regular ring and a
R-regular sequence X1,… , Xl in p (l < n) defines a complete intersection at p. Geometrically, it says that
the intersection of hyperplanes Xi = 0 at the origin is a complete intersection. ▬

More generally, we have the following.

Example 1.2.7. Let R = k[X1,… , Xn] (or just a regular ring) and Y = SpecR. Then, if f1,… , fl ∈ R is
an R-regular sequence, then the local ring X,x of a subvariety

X = SpecR∕⟨f1,… , fl⟩ ⊂ Y

at any x ∈ X is a complete intersection, noting a point in X corresponds to a prime ideal of Y containing
f1,… , fl. Thus, X is a local complete intersection scheme. ▬

The preceding lemma and examples suggest that the following relative notion gives a tautological criterion
for a local complete intersection.

https://stacks.math.columbia.edu/tag/032A
https://stacks.math.columbia.edu/tag/09PZ
https://stacks.math.columbia.edu/tag/09Q0
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Definition 1.2.8. Let f ∶ X ↪ Y be a locally closed immersion of schemes with Y a locally noetherian
scheme. Then, f is said to be a regular immersion (of codimension l) at p ∈ X if in the local ring Y ,p,
the ideal of X is generated by a regular sequence (of length l). If f is a regular immersion (of codimension
l) at every x ∈ X, then f is said to be a regular immersion (of codimension l). ▬

Remark 1.2.9. [Vak17, 8.4.G.] The locally noetherian hypothesis ensures that if f is a regular immersion at
x ∈ X, then f is a regular immersion in an open neighborhood x. ▬

Example 1.2.10. A closed immersion f ∶ X ↪ Y of locally noetherian schemes is a regular immersion of
codimension 1 iffX is an effective Cartier divisor of Y (cf. Remark A.1.14). Hence, we can think of a regular
closed immersion locally as a finite sequence of iterate operations of taking an effective Cartier divisor in an
effective Cartier divisor. ▬

By Lemma 1.2.4 and definition, we tautologically have the following criterion for a local intersection.

Corollary 1.2.11. Let f ∶ X ↪ Y be a locally closed immersion of locally noetherian schemes with Y
non-singular. If f is a regular immersion at x ∈ X, then the local ring X,x is a complete intersection. ▬

For schemes locally of finite type, we have another characterization of local complete intersections.

Definition 1.2.12. Let S be a finitely generated k-algebra for a field k.

(i) S is said to be a global complete intersection over k if there exists an isomorphismS ≅ k[x1,… , xn]∕⟨f1,… , fl⟩
such that dimS = n − l.

(ii) S is said to be a local complete intersection over k if there exists a covering SpecS =
⋃

i SpecSgi
such that each Sgi is a global intersection over k.

▬

Indeed, this definition is compatible with the previous one (although it is not as obvious as it may seem).

Lemma 1.2.13. [Sta21, Tag 09Q6] Let S be a finitely generated k-algebra for a field k.

(i) For a prime ideal p ⊂ S, the local ring Sp is a global complete intersection in the sense of Definition
1.2.12 if and only if Sp is a complete intersection in the sense of Definition 1.2.1.

(ii) S is a local complete intersection in the sense of Definition 1.2.12 if and only ifS is a local complete
intersection in the sense of Definition 1.2.1.

In particular, a local complete intersection scheme locally of finite type is locally isomorphic to SpecS with
S a global complete intersection. ▬

Remark 1.2.14. In [Har77, II.8.], a closed subscheme Y of a non-singular variety X over k is said to be a
local complete intersection in X if the ideal sheaf Y of Y in X can be locally generated by r = codimX(Y )
elements at every point. Hence, the preceding lemma shows that our definitions are also compatible with this
definition. Note that this also follows directly from Corollary 1.2.11 together with the following result:

Lemma 1.2.14.1. [Sta21, Tag 02JN] Let (R,m) be a noetherian local Cohen-Macaulay ring and
x1,… , xl ∈ m. Then, x1,… , xl is a regular sequence if and only if dimR∕⟨x1,… , xl⟩ = dimR −
l. ◾

▬

https://stacks.math.columbia.edu/tag/09Q6
https://stacks.math.columbia.edu/tag/02JN
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Now, we have the following examples of local complete intersection varieties.

Example 1.2.15. A subvariety X of Ank (resp. ℙnk) is often said to be a (global) complete intersection
(by abuse of notation for us) if the ideal of X is generated by precisely (n − dimX) polynomials (resp.
homogeneous polynomials). A (global) complete intersection in this sense is a local complete intersection
by the preceding lemma. ▬

A subvariety ofℙnk that is a local complete intersection is not necessarily a (global) complete intersection.

Example 1.2.16. [Har77, Exercise I.2.17.] Consider the twisted cubic C in ℙ3k, which is given by the
embedding associated to the very ample line bundle ℙ1 (3) (cf. Lemma A.3.2), i.e. by the embedding

ℙ1k ↪ ℙ3k, [s ∶ t]↦ [s3 ∶ s2t ∶ st2 ∶ t3].

Note if we write ℙ3k = Proj k[x0, x1, x2, x3], then we clearly have

C = Proj k[x0, x1, x2, x3]∕⟨x0x3 − x1x2, x21 − x0x2, x
2
2 − x1x3⟩.

Therefore, we can see that in each standard chart of ℙ3k, C is cut out by two polynomials, i.e. C is a local
complete intersection. Thus, it suffices to show that the homogeneous ideal I ofC cannot be generated by two
elements. Letm = ⟨x0, x1, x2, x3⟩. Then, by Nakayama’s lemma, homogeneous polynomials f1,… , fl ∈ m
minimally generates I if and only if f1,… , fl descend to a base of I∕mI . Since x0x3−x1x2, x21−x0x2, x

2
2−

x1x3 descend to linearly independent elements (indeed a base), we are done. ▬

1.3 Divisors on a normal variety
In this section, we quickly introduce some notions regarding divisors on a normal variety. A normal variety is
one of the most natural settings for Weil divisors; R1 allows us to define principal Weil divisors (cf. Example
1.1.6) and S2 ensures that rational functions only depend on subsets of codimension 1 by Hartogs’s lemma
(Lemma 1.1.9). However, since a normal variety is in general not locally factorial, the natural injective map
CaCl(X) ↪ Cl(X) (cf. Lemma A.1.10 (iv)) is in general not surjective. In particular, it is possible that the
canonical divisor is not Cartier, which is very inconvenient for intersection theory and hence for studies of
positivity. This problem is sometimes (partially) solved by extending coefficients from ℤ to ℚ.

Definition 1.3.1. Let X be a normal variety.

(i) A ℚ-divisor is a formal linear combination of prime divisors of X over ℚ.

(ii) A ℚ-divisor D of X is said to be ℚ-Cartier if there exists n ∈ ℤ>0 such that nD is Cartier.

(iii) Let f ∶ Z → Y be a morphism of schemes and D a ℚ-Cartier divisor with mD Cartier. Then,
define the pull-back of D via f to be f ∗D ∶= 1

mf
∗(mD).

(iv) A normal variety X is said to be ℚ-factorial (or with only ℚ-factorial singularities) if all the
Weil divisors (i.e. ℚ-divisors) are ℚ-Cartier.

(v) Let Z ⊂ X be a closed scheme of dimension k and let D1,… , Dk be ℚ-Cartier divisors on X with
niDi Cartier. Then, we define the intersection number of D1,… , Dk with Z to be

(D1⋯Dk ⋅Z) ∶=
(n1D1⋯ nkDk ⋅Z)

n1⋯ nk
,

where (n1D1⋯ nkDk ⋅Z) denotes the usual intersection number (e.g. [KM98, 1.34.]).
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▬

Also, we can define the canonical divisor on a normal variety as follows:

Definition 1.3.2. Let X be a normal variety and let U denote the smooth locus of X, whose complement is
of codimension ≥ 2 by normality (cf. Corollary 1.1.10). The canonical divisor KX of X is a Weil divisor
defined as the image of KU under the isomorphism Cl(U )

∼
→ Cl(X) by Lemma A.1.3. ▬

Hence, we can compute the canonical class of a normal variety just as in the non-singular case except that
we need to take the closure at the end. In particular, we can apply the adjunction formula (Theorem A.2.3).
We can also define the relative canonical divisors (Definition A.2.5).

Definition 1.3.3. Let Y be a normal variety such that mKX is Cartier for some m > 0 and f ∶ X → Y
be a birational morphism from a normal variety X. Then, the relative canonical divisor is defined to be
KX∕Y ∶= KX − f ∗KY . ▬

The example in the next section sheds light on many aspects of the preceding definitions.

1.4 Example: the affine quadric cone
Let

Q = Spec k[x, y, z]∕⟨z2 − x2 − y2⟩

be the affine quadric cone in A3k. First, Q is normal by Serre’s normality criterion (Theorem 1.1.4), noting
that Q is a complete intersection (cf. Example 1.2.5), i.e. S2 (cf. Lemma 1.2.3) and that the origin is the
only singularity, i.e. Q is R1. For a more direct proof, see [Sha88, p.125]. The following lemma shows
that Q(Q) is not locally factorial by Lemma A.1.10. (We can also show it directly, noting the factorization
y2 = (z + x)(z − x).)

Lemma 1.4.1. Consider a line L = Spec k[x, y, z]∕⟨z − x, y⟩ ⊂ Q. The Weil divisor L is not Cartier.
However, theWeil divisor 2L is a principal Cartier divisor. In particular,L is not Cartier butℚ-Cartier. ▬

Remark 1.4.2. Note that we have the following chain of ideals in k[x, y, z]:

⟨z2 − x2 − y2⟩ ⊊ ⟨z − x, z2 − x2 − y2⟩ = ⟨z − x, y2⟩ ⊊ ⟨z − x, y⟩.

Set-theoretically the last two ideals define the same subset ofQ, but scheme-theoretically they define different
subschemes of Q. ▬

Proof of Lemma. There are several ways to prove the first part, where the proof of the second part is contained
in the first case:

(Definition): To see L is not Cartier, it suffices to show that L is not locally principal at the origin, i.e.
for any open neighborhood U of the origin and any rational function f on U ,

[L ∩ U ] ≠
∑

[Z∩U ]∶prime divisor
vZ∩U (f )[Z ∩ U ].

Indeed, since a uniformizer of Q,L∩U is given by the equivalence class of y, we have vL∩U (y) = 1
and vL∩U (z − x) = vL∩U (y2∕(z + x)) = 2. Hence, if vL∩U (f ) > 0, then we have vL∩U (f ) > 1 or
vL′∩U (f ) > 0 for L′ = ⟨z + x, y⟩. On the other hand, since 2L = vL(z − x)L as we saw, 2L is a
principal Cartier divisor associated to z − x.
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(Tangent space): To seeL is not principal, it suffices to show thatL is not cut out by a single polynomial
around the origin. Indeed, since dimQ = 2 andQ is singular at the origin, dim T

⟨x,y,z⟩Q = 3 and clearly
dim T

⟨x,y,z⟩L = 1. On the other hand, for any f ∈ ⟨x, y, z⟩, we have

dim T
⟨x,y,z⟩(k[x, y, z]∕⟨f ⟩) ≥ 3 − 1 = 2.

Therefore L cannot be cut out by a single equation around the origin. Morally speaking, any smooth
Weil divisor that contains a singular point of the ambient scheme Q is not locally principal around the
point.

(Intersection theory): (cf. [Har77, Example A.1.1.2.]) Assume L is a Cartier divisor for the sake of
contradiction. Note L is linearly equivalent to the line L′ = {z + x = 0, y = 0} by a rational function
f (x, y, z) = y∕(z + x) on Q. Thus, (L ⋅ L) = (L ⋅ L′). Now also note that 2L′ ∼ L + L′ is linearly
equivalent to a circle C = {z − 1 = 0} by a rational function g(x, y, z) = y∕(z − 1). Then, since C
intersects with L transversely at one point, we have

2(L ⋅ L′) = (L ⋅ (2L′)) = (L ⋅ C) = 1,

which is absurd since an intersection number of Cartier divisors is integer. Note this computation is
correct in the sense of Definition 1.3.1 (iv) since (2L ⋅ 2L) = ((L + L′) ⋅ C) = 2 in the usual sense.

▭

Now, by the adjunction formula (Theorem A.2.3) and the fact that Cl(Ank) = 0 (Lemma A.1.6), the
canonical class is given as follows.

Lemma 1.4.3. For the affine quadric cone Q, we have KQ = 0 and in particular KQ is (ℚ-)Cartier. In
particular, KQ can be represented by Q ∩H for any hyperplaneH ⊂ A3k, whereH may contain the origin.

▬

Indeed, Cl(Q) consists of the classes of the line L = ⟨z − x, y⟩ and the canonical class KQ.

Lemma 1.4.4. [Har77, Example II.6.5.2.] For the affine quadric cone Q, we have Cl(Q) = ℤ∕2ℤ with the
line L = Spec k[x, y, z]∕⟨z − x, y⟩ a generator. In particular, Q is ℚ-factorial. ▬

Proof. By Lemma A.1.3, we have an exact sequence

ℤ 1↦L // Cl(Q) // Cl(Q ⧵ L)→ 0 .

Then, Cl(Q⧵L) = 0 by Lemma A.1.6 sinceQ⧵L ≅ Spec(k[x, y, z]∕⟨z2 − x2 − y2⟩)(z−x) (cf. Remark 1.4.2)
and (k[x, y, z]∕⟨z2 − x2 − y2⟩)(z−x) ≅ (k[a, b, c]∕⟨ab − c2⟩)b ≅ k[b, b−1, c] is a unique factorization domain.
Hence, L generates Cl(Q) and since 2L = 0 by Lemma 1.4.1, we have Cl(Q) ≅ ℤ∕2ℤ. ▭

Lemma 1.4.5. Let �Q ∶ Q̃ → Q be the blow-up of the quadric coneQ at the origin with exceptional divisor
E. Then, Q̃ is non-singular, (E ⋅ E) = −2, and KQ̃∕Q = 0. ▬

Proof. For the purpose of symmetry, we write Q = {f (x, y, z) = x2 + y2 + z2 = 0}. First of all, note the
blow-up � ∶ Bl0A3 → A3 is given by

Bl0A3 = {((x, y, z), [px ∶ py ∶ pz]) ∈ A3 × ℙ2 ∣ pxy = pyx, pyz = pzy, pzx = pxz}.
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Now, consider the affine chart Ux of Bl0A3 with px ≠ 0, which is isomorphic to Spec k[x, y′, z′] via y′ = py
px

and z′ = pz
px
. Then, we have

�−1(Q) ∩ Ux = {f (x, y′x, z′x) = x2(1 + y′
2 + z′2) = 0}.

Here, the factor x2 vanishes on the exceptional plane �−1(0) ∩ Ux = {x = 0} and the other component
{1 + y′2 + z′2 = 0} ∩ Ux is the birational transform of Q. Then, the exceptional fiber in Ux is given by

E ∩ Ux = �−1(0) ∩ {1 + y′
2 + z′2 = 0} = {1 + y′2 + z′2 = 0, x = 0}.

Therefore, Q̃ ∩ Ux = Spec k[x, y′, z′]∕⟨1 + y′
2 + z′2⟩ ≅ Spec k[x, y′2] is non-singular and hence Q̃ is non-

singular by symmetry. Furthermore, by the local expressions, the exceptional divisor is the non-singular
projective conic in E0 = Proj k[px, py, pz]:

E = Proj k[px, py, pz]∕⟨p2x + p
2
y + p

2
z⟩ ≅ ℙ1.

To see (E ⋅ E) = −2 (cf. [Bur, §4.]), consider a principal divisor (y◦�Q), where

y ∈ K(Q) = Frac(k[x, y, z]∕⟨x2 + y2 + z2⟩)

is a rational function on Q. Then, for example by [Har77, Lemma V.1.3.], note that

((y◦�Q) ⋅ E) = degE(E ⊗ Q̃(y◦�Q)) = degE(E) = 0.

Now, consider the chart Q̃ ∩ Ux as above. Then, y◦�Q = y′x vanishes (with multiplicity 1) on {x = 0} =
E ∩ Ux and

{y′ = 0} = {z′ =
√

−1} ∪ {z′ = −
√

−1} = (C+ ∩ Ux) ∪ (C− ∩ Ux),
where

C± = {pz = ±
√

−1px, z = ±
√

−1x, y = py = 0} ⊂ Bl0A3.
Since we can do the similar arguments in the other two charts, we see that

(y◦�Q) = E + C+ + C−.

Hence, 0 = ((y◦�Q) ⋅ E) = (E ⋅ E) + (C+ ⋅ E) + (C− ⋅ E) = (E ⋅ E) + 2 as desired, where (C± ⋅ E) = 1
follows by the local expressions given above. See also the following Figure 1.1.

Figure 1.1: The vanishing locus of y [Bur, §4.]

Finally, let us see KQ̃∕Q = 0. I present two ways of computations.
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(Adjunction formula): ([oM18, p.10]) By the adjunction formula and Lemma A.2.7, we have

KQ = (KA3 +Q)|Q,
KQ̃ = (KBl0 A3 + Q̃)|Q̃,

KBl0 A3 = �
∗KA3 + 2E0.

First of all, by the second and the third equations together with E0|Q̃ = E, we have

KQ̃ = KBl0 A3 |Q̃ + Q̃|Q̃
= (�∗KA3 + 2E0)|Q̃ + Q̃|Q̃
= (�∗KA3 )|X̃ + 2E + Q̃|Q̃
= �∗Q(KA3 |Q) + 2E + Q̃|Q̃,

where the third equality follows by the commutativity of the summation of divisors and the restriction
of divisors and the last equation follows from the following commutative diagram:

Q̃ �
� //

�Q
��

Bl0An

�
��

Q �
� // A3

Now, note we have KA3 |Q = KQ −Q|Q by the first adjunction above. Hence,

KQ̃ = �
∗
Q(KQ −Q|Q) + Q̃|Q̃ + 2E

= �∗QKQ − �
∗
Q(Q|Q) + Q̃|Q̃ + 2E

= �∗QKQ − (�
∗Q)|Q + Q̃|Q̃ + 2E

= �∗Q(KQ) − (�
∗(Q) − Q̃)|Q̃ + 2E.

Now, since we can write �∗(Q) − Q̃ = nE0, where n corresponds to the multiplicity of the origin in
Q, which is 2, we have

KQ̃ = �
∗
Q(KQ) − (2E0)|Q̃ + 2E = �∗Q(KQ).

(Canonical forms): ([Mil, Proof of Lemma 2.2.]) We can also see this by more explicit computations
on rational forms. First, since f (x, y, z) = x2 + y2 + z2 vanishes on Q, we have

df = )xfdx + )yfdy + )zfdz = 0

as a 1-form on Q. Then, S = dx∧dy∧dz
f ∈ Ω3

A3
(Q) is a basis for 3-forms on A3 with pole of order 1

along Q. By the usual computation, we observe that each expression on the right of

s = ResA3|X S ∶=
dx ∧ dy
)zf

=
dy ∧ dz
)xf

= dz ∧ dx
)yf

coincides, which defines a rational canonical form on Q and is called the Poincaré residue of S.
Now, as in complex analysis, since the vanishing of all the partial derivatives implies that the point is
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singular, s is regular and non-zero at every non-singular point. Now, as above consider an affine chart
Spec k[x′, y′, z] of Bl0A3 given by coordinates x = x′z, y = y′z, z = z (i.e. the chart with pz ≠ 0
and x′ = px∕pz, y′ = py∕pz). Then, the strict transform is given by {fz(x′, y′, z) ∶=

f (x′z,y′z,z)
z2 = 0}.

Consider a 3-form
S′z =

dx′ ∧ dy′ ∧ dz
fz

on Spec k[x′, y′, z]. Then, noting x = x′z, y = y′z, z = z imply dx = zdx1 + (a multiple of dz) and
similarly for dy, we see that

�∗(dx ∧ dy ∧ dz)|Spec k[x′,y′,z] = z2dx′ ∧ dy′ ∧ dz

and hence �∗S|Spec k[x′,y′,z] = S′z. Therefore, the symmetric arguments in the other two charts shows
that we can obtain a 3-form S′ on Q̃ from S′x, S

′
y, S

′
z in the obvious way and then obtain the corre-

sponding canonical form s′ = ResBl0 A3|Q̃ S
′ on Q̃. Since we have �∗Qs = s

′ by construction, we have
�∗QKQ = KQ̃

▭

I will omit details of computations that are similar to what we did in the preceding proof (for example,
the standard coordinates in an affine chart of the blow-up, computations of the relative canonical divisors by
the adjunction formula, and the derivation of Poincaré residue+) in the later computations.



Chapter 2

The minimal model program

Although studies of singularities are ubiquitous in all times and areas of mathematics, let me introduce the
minimalmodel program as one algebro-geometric context where studies of singularities are vital. In short, the
minimal model program aims at the birational classification of projective varieties by “minimal models” that
have simpler global structure in the sense that they contain fewer rational curves. To obtain a minimal model
that corresponds to the birational class ofX, we perform a sequence of “reasonable” birational modifications
to X. Therefore, our goal is to identify what it means to have a simpler global structure and what kind of
birational modifications are reasonable ones.

First, let us see the case of classical surface minimal models (called relatively minimal models) as a
warm-up in birational geometry and a motivation towards generalization.

Definition 2.0.1. A non-singular projective surfaceX is called a relatively minimal model if any birational
morphism f ∶ X → X′ to another non-singular projective surface X′ is necessarily an isomorphism. ▬

Remark 2.0.2. Let (Σ,≥) be a poset on the set of all isomorphism classes of projective varieties whereX ≥ Y
iff there exists a birational morphism X → Y . Then, a relatively minimal model is a minimal element in
(Σ,≥). ▬

To obtain a relatively minimal model we set the reasonable birational modification to be a blow-down
whose existence is guaranteed by the following result.

Theorem 2.0.3 (Castelnuovo’s contraction theorem). [Har77, Theorem 5.7] Suppose Y is a (−1)-curve on a
non-singular projective surfaceX. Then, there exists a morphism f ∶ X → X0 to a non-singular projective
surface X0 and a point p ∈ X0 such that f is the blow-up of X0 at p with exceptional divisor Y . ▬

Indeed, the (relatively) minimal model program for non-singular projective surfaces is complete in the
following sense. We will go through a proof since it gives insight towards generalization and provides some
remarks with examples.

Theorem 2.0.4. [Har77, Theorem V.5.8.] Every non-singular projective surface admits a birational mor-
phism to a relatively minimal model. ▬

Proof. First of all, I claim that a non-singular projective surface is a relatively minimal model if and only if
it contains no (−1)-curve. One direction is obvious by Castelnuovo’s contraction theorem.

Conversely, suppose a non-singular projective surface X contains no (−1)-curve and let f ∶ X → Y be
a birational morphism. Then, we first note the following lemma, which characterizes a birational contraction
of irreducible curves as a sequence blow-downs and in particular guarantees the existence of a (−1)-curve.
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Lemma 2.0.4.1. [Har77, Corollary V.5.4.] Let f ∶ X′ → X be a birational morphism of non-
singular projective surfaces and let n(f ) be the number of irreducible curves C ′ ⊂ X′ such that
f (C ′) is a point. Then, n(f ) is finite and f can be factored into the composition of exactly n(f )
blow-downs. ◾

The lemma in particular says if n(f ) > 0, thenX′ contains at least one (−1)-curve since the curve blown-
down at the last step is a (−1)-curve. Therefore, we must have n(f ) = 0. Hence, it suffices to show that if
n(f ) = 0, then f is an isomorphism, which follows by the following:

Theorem 2.0.4.2 (Zariski’s Main Theorem). [Har77, Theorem V.5.2.] Let f ∶ X Y be a bira-
tional map of projective varieties with Y normal. If P is in the locus of indeterminacy of f , then
the total transform T (P ) is connected and of dimension ≥ 1. Here, for any subset Z ⊂ X, the
total transform T (Z) is defined to be p2(p−11 (Z)), where p1 and p2 are the projections of the graph
Γ ⊂ X × Y of f , i.e the closure of the graph of the representation (U,�) of f inX × Y , ontoX and
Y . ◾

Indeed, Zariski’s main theorem shows that if n(f ) = 0, then the birational map f−1 ∶ Y X is also a
morphism, i.e. f is an isomorphism as desired.

Hence, given a non-singular projective surface X, it suffices to show that there exists a birational mor-
phismX → Y , where Y is a non-singular projective surface with no (−1)-curve. IfX contains no (−1)-curve,
we are done. Thus, supposeX contains a (−1)-curve. Then, by Castelnuovo’s contraction theorem we obtain
a sequence of blow-downs

X = X0 → X1 → X2 → ⋯ .

Now, it suffices to show that the sequence eventually stops. There are several ways to see this. One way
is to observe that (−1)-curves Ei ⊂ Xi we contract descend to linearly independent elements of a finite
dimensional vector space H1(X,ΩX) since the cohomology class ei = c(Ei) of Ei in H1(X,ΩX) satisfy the
intersection relations ⟨ei, ei⟩ = 0 and ⟨ei, ej⟩ = 1 (cf. [Har67, Ex. V.1.8.]).

Example 2.0.4.3. This does not mean that the number of (−1)-curves is bounded (by H1(X,ΩX))
since it is possible that some contraction contracts infinitely many (−1)-curves. Indeed, we can
obtain a surface with infinity many (−1)-curves by blowing up nine points on ℙ2 with eight of them
in a nice configuration (Example 2.1.7) so that the blow-down at the other point gives us a del Pezzo
surface of degree 1, which only contains 280 (−1)-curves (cf. Lemma 2.1.6.7). ◾

Another way is to notice that the Picard number (Construction A.4.5) drops by one at each blow-down,
which suffices for the proof since the Picard number of a non-singular projective surface is finite by the
Néron-Severi theorem. ▭

Remark 2.0.5. Now, what we should learn from the proof are the following:

(i) Relatively minimal surfaces can be characterized by the non-existence of (−1)-curves. Thus, we
expect that a minimal model would be defined as a variety that contains fewer rational curves and
hence has a simpler global structure.

(ii) We were able to birationally contract (−1)-curves to obtain a relatively minimal surface. Hence, we
expect that a reasonable birational modification would look like the contraction of a rational curve. In
particular, we need to identify what kind of rational curves we should contract and what kind of variety
we obtain after contraction. Furthermore, we want the contraction to respect some invariants like the
Picard number to ensure the finiteness of the number of contractions to obtain a minimal model.

Here, I also point out some problems in the preceding classical approach.
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(i) We may end up non-isomorphic relatively minimal models even if we start with the same non-
singular projective surface and perform blow-downs as in the proof.

Example 2.0.5.1. Let X be a surface given by blowing up two distinct points on ℙ2. We can obtain
two non-isomorphic relatively minimal models by blowing down different (−1)-curves. Indeed, if we
blow down the two exceptional divisors E1, E2 corresponding to those two points, then we obtain a
relatively minimal model ℙ2 of X. On the other hand, we can also blow down the proper transform L
of the line in ℙ2 joining the two points. Then, we obtain a relatively minimal model ℙ1 × ℙ1(̸≅ ℙ2).
Note L is indeed a (−1)-curve since we have ((H − E1 − E2) ⋅ (H − E1 − E2)) = 1 − 1 − 1 = −1 for
a hyperplane sectionH of ℙ2. Note we have an isomorphism

ℙ2 × ℙ2 = Proj k[x0, x1] × Proj k[x2, x3] ≅ Proj k[x0, x1, x2, x3]∕⟨x0x3 − x1x2⟩ =∶ Q

and a (bi)rational map
Q Proj k[x0, x1, x2] = ℙ2

by projection. Then, consider the graph Γ ⊂ Q × ℙ2 of �. By explicit computation, we can see that
the first projection �1 ∶ Γ → Q is the blow-up of Q at [0 ∶ 0 ∶ 0 ∶ 1] and the second projection
�2 ∶ Γ → ℙ2 is the blow-up of ℙ2 at [0 ∶ 0 ∶ 1] and [0 ∶ 1 ∶ 0]. For details of computations, see
[Har92, Example 7.22.]

◾

In the surface minimal model program, we have the uniqueness of a minimal model in the sense that a
minimal model obtained from a non-singular surface does not depend on the choice of contraction. In
the higher dimensional minimal model program, we do not have the uniqueness.

(ii) Since a (−1)-curve is a notion specific to surfaces, it would be better to have more general languages
to describe rational curves to contract.

▬

Remark 2.0.6. Keeping the previous remarks in mind, we are interested in finding rational curves on a variety
to begin with. For example, if X is a smooth variety that is Fano, i.e. with the ample anti-canonical divisor
−KX , then we can show that through any point of X there is a rational curve D such that

0 < −(D ⋅KX) ≤ dimX + 1

([KM98, Theorem 1.10]). In particular, a smooth Fano variety is far from what we expect for a minimal
model. For details of the proof, see section 1.1 of [KM98]. ▬

2.1 The surface minimal model program
To be more precise with Remark 2.0.5, let us introduce notions of cones and extremal faces.

Definition 2.1.1. Let K = ℚ or K = ℝ and V a K-vector space. A subsetN ⊂ V is called a cone if 0 ∈ N
andN is closed under multiplication by positive scalars.

A subconeM ⊂ N is called extremal or said to be an external face of N if u, v ∈ N and u + v ∈ M
imply u, v ∈M . A 1-dimensional extremal subcone is called an extremal ray. ▬

Now, we can define contractions.
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Definition 2.1.2. Let X be a projective variety and F ⊂ NE(X) an extremal face, where NE(X) is the
(Kleiman-Mori) cone of curves, i.e.

NE(X) ∶= {
∑

ai[Ci] ∣ Ci ⊂ X, 0 ≤ ai ∈ ℝ} ⊂ N1(X),

NE(X) ∶= the closure of NE(X) inN1(X).

A morphism contF ∶ X → Z is called the contraction of F if the following hold:

(i) contF (C) is a point for an irreducible curve C ⊂ X iff [C] ∈ F ,

(ii) (contF )∗X = Z .

Note that the contraction does not necessarily exist. ▬

The following result regarding extremal rays is quite useful.

Theorem 2.1.3 (The Cone Theorem). [KM98, Theorem 1.24. (i)] LetX be a non-singular projective variety.
Then, there are countably many rational curves Ci ⊂ X such that 0 < −(Ci ⋅KX) ≤ dimX + 1, and

NE(X) = NE(X)KX>0 +
∑

i
ℝ≥0[Ci],

where NE(X)KX>0 ∶= NE(X) ∩KX>0 with KX>0 ∶= {x ∈ N1(X) ∣ (x ⋅KX) > 0}. ▬

Remark 2.1.4. The significance of the result in terms of the minimal model program is that the theorem in
particular says if KX is not nef, then NE(X)KX≤0 ≠ 0 and hence there exists a KX-negative extremal ray
R ⊂ NE(X), i.e., (R ⋅KX) < 0. In other words, this tells us which extremal face we should contract. ▬

Now, in the case of surfaces, we have the following classification of contractions.

Theorem 2.1.5. [KM98, Theorem 1.28.] Let X be a smooth projective surface and R ⊂ NE(X) a KX-
negative extremal ray, i.e. (R ⋅ KX) < 0. Then, the contraction contR ∶ X → Z exists and is one of the
following types:

(i) Z is a point, �(X) = 1 and −KX is ample. (In fact, X ≅ ℙ2)

(ii) Z is a smooth surface andX is a minimal ruled surface overZ, i.e. each fiber is an integral rational
curve; �(X) = 2.

(iii) Z is a smooth surface and X is obtained from Z by blowing up a closed point; �(Z) = �(X) − 1,
where � is the Picard number.

▬

Sketch of a proof. Let C ⊂ X be an irreducible curve such that [C] ∈ R. The above three cases correspond
to the sign of the self-intersection (C ⋅ C).

(i) First assume (C ⋅ C) > 0. Then, by [KM98, Corollary 1.21.], [C] is an interior point of NE(X).
Since [C] also generates an extremal ray, we haveN1(X) ≅ ℝ, i.e. �(X) = 1. By supposition we have
(C ⋅KX) < 0 and henceKX is negative onNE(X)⧵{0}. Thus, −KX is ample by Kleiman’s ampleness
criterion (Theorem A.4.6).
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(ii) Next assume (C ⋅C) = 0. Then, we can show that |mC| is base point free for m ≫ 1 (cf. Definition
A.3.3). Now, let contR ∶ X → Z be the Stein factorization ([Har67, Corollary 11.5.]) of the corre-
sponding morphism, i.e. contR is a projective morphismwith connected fibers andZ is a normal curve
and hence is non-singular. Let

∑

aiCi be a fiber of contR. Then, we have
∑

ai[Ci] = [C] ∈ R. Since
R is an extremal ray, we have [Ci] ∈ R for all i. Therefore, we have (Ci ⋅ Ci) = 0 and (Ci ⋅ KX) < 0.
By the adjunction formula (Theorem A.2.4), 2g(C) − 2 = (C ⋅ (C + KX)), where g(C) denotes the
genus of C , we have Ci ≅ ℙ1 and (Ci ⋅Ki) = −2. Therefore,

−2 = (C ⋅KX) =
(

∑

aiCi ⋅KX
)

= −2
∑

ai,

i.e.
∑

aiCi is an integral rational curve as desired.

(iii) Finally assume (C ⋅ C) < 0. By the adjunction formula and (C ⋅ KX) < 0, C is a (−1)-curve and
hence we apply Castelnuovo’s contraction theorem (Theorem 2.0.3).

▭

Note that the contraction in (i) and (ii) yields the explicit structure of X while the contraction in (iii)
introduces the new surface Z. Now, before discussing the minimal model program, let us appreciate the
cone theorem and (the proof of) Theorem 2.1.5 by observing the following example of computations of
NE(X).

Example 2.1.6 (Del Pezzo Surfaces). In this example, we compute the cone of curves of del Pezzo surfaces.
Since del Pezzo surfaces are interesting in its own right and appear later, I will go through basics of them.
See for example [Man86, §§24-26], [Liu17, §§3.6-3.8.], and [Deb16, Example 5.15.].

Definition 2.1.6.1. A non-singular projective surface V is said to be a del Pezzo surface if it is a
Fano variety, i.e. if the anti-canonical divisor −KV is ample. A degree of a del Pezzo surface V is
defined to be the self-intersection (KV ⋅KV ). ◾

First, del Pezzo surfaces have the following nice descriptions.
Lemma 2.1.6.2. [Man86, Theorem 24.3, 24.4.], [Har77, Corollary V.4.7.] Let V be a del Pezzo
surface of degree d. Then, we have 1 ≤ d ≤ 9.

(i) If d = 9, then V ≅ ℙ2.

(ii) If d = 8, then either V ≅ ℙ1 × ℙ1 or V ≅ Blp ℙ2 for p ∈ ℙ1.

(iii) If 1 ≤ d ≤ 7, then V ≅ Blp1,…,p9−d ℙ
2 for some p1,… , p9−d ∈ ℙ2 in general position,

i.e. with no triple colinear and no 6-tuple lying on a conic.

Conversely, suppose 3 ≤ d ≤ 9 and p1,… , p9−d ∈ ℙ1 are in general position. Then, V ′d ∶=
Blp1,…,p9−d ℙ

2 and ℙ1 × ℙ1 are del Pezzo surfaces of the corresponding degree; furthermore, the
ample anti-canonical divisor −KV ′d gives the anti-canonical embedding V ′d ↪ ℙd as a surface of
degree d, whose canonical sheaf !V ′d is isomorphic to V ′ (−1). ◾

Remark 2.1.6.3. [Man86, Remark 24.4.1, 24.4.2.]

(i) As we see in d = 8, it is not necessarily true that del Pezzo surfaces of the same degree
are all isomorphic. However, since the projective automorphism of ℙ2 acts transitively on
systems of ≥ 4 points in general position, all del Pezzo surfaces of degree 5 ≤ d ≤ 7 are
isomorphic.
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(ii) We also have sufficient conditions for a configuration of p1,… , p9−d with d = 1, 2 so that
Blp1,…,p9−d ℙ

2 is a del Pezzo surface. See [Man86, Remark 26.2.].

◾

Corollary 2.1.6.4. [Har77, Proposition V.4.8.] Let V ̸≅ ℙ1 × ℙ1 be a del Pezzo surface of degree
d and write V ≅ Blp1,…,p9−d ℙ

2.

(i) PicV ≅ ℤ10−d , generated by l, e1,… , e9−d , where l corresponds to the hyperplane section
of ℙ2 and ei corresponds to the exceptional divisor.

(ii) The intersection pairing on X is given by l2 = 1, e2i = −1, l ⋅ ei = 0, ei ⋅ ej = 0 for i ≠ j.

(iii) The canonical class is KV = −3l −
∑

ei. Note since we anti-canonically embed i ∶ V ↪
ℙd , i.e. i∗ℙd (1) = V (−KV ), the hyperplane section is −KV .

◾

Proof. Part (i) follows from Corollary A.1.4. Hence, we have part (ii) by Lemma A.2.6.1. Finally,
(iii) follows by noting that Kℙ2 = −3H (Example A.2.2) and Lemma A.2.6. ◽

Remark 2.1.6.5. Part (ii) in the corollary has the following geometric interpretations:

(i) l2 = 1 (two lines in ℙ2 intersects at one point),

(ii) l.ei = 0 (l does not pass through the (9 − d) points we blow up),

(iii) ei.ej = 0 for distinct i, j (ei and ej are disjoint),

(iv) e2i = −1 (a line passing though pi and ei intersects at one point, i.e., (l − ei).ei = 1).

◾

Now, by Lemma 2.1.6.2, we in particular see that the blow-up of ℙ2 at 6 points in general position is
a non-singular cubic surface in ℙ3 and vice versa. Hence, by Corollary 2.1.6.4 we obtain the following
well-known result.

Lemma 2.1.6.6. [Har77, Theorem V.4.9.] Any non-singular cubic surfaceX in ℙ3 contains exactly
27 (−1)-curves. Writing X ≅ Blp1,…,p6 ℙ

2 with corresponding exceptional curves Ei, these (−1)-
curves can be listed as follows:

(i) the 6 exceptional curves Ei (i = 1,… , 6);

(ii) the 15 strict transform Fij of the line in ℙ2 containing pi and pj (1 ≤ i < j ≤ 6);

(iii) the 6 strict transform Gj of of the conic containing the five pi (i ≠ j and j = 1,… , 6).

Here, note an irreducible curve C ⊂ V is a (−1)-curve if and only if C is a line, i.e. a curve of
degree 1 and genus 0, by the adjunction formula 2g − 2 = −degV (C) + (C ⋅ C), where we use the
fact that the hyperplane section is given by −KX (Lemma 2.1.6.4) to see degV (C) = −(C ⋅KV ). ◾
Proof. First, noting that Ei ∼ ei, Fij ∼ l − ei − ej , and Gj ∼ 2l −

∑

i≠j ei, we see that E2i = F
2
ij =

G2j = −1 by Lemma 2.1.6.4. Hence, it remains to show that any curve C on X with C2 = −1 (and
hence degC = 1) is one of the lines listed above. Assume C is not any of the exceptional curves Ei
and write

C ∼ al −
∑

i
biei
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with a > 0 and bi ≥ 0. Then, degC = (C ⋅ (−KX)) = 1 and C2 = −1 give the following equations:

3a −
∑

i
bi = 1

a2 −
∑

i
b2i = −1.

Now, by the Cauchy-Schwarz’s inequality, we have
(

∑

i
bi

)2

≤ 6

(

∑

i
b2i

)

.

Therefore, we have
3a2 − 6a − 5 ≤ a,

which implies a = 1 or a = 2. Then, when a = 1, we get C = Fij and when a = 2, we get C = Gj
as desired. ◽

Now, by the same strategy, we can show the following:
Lemma 2.1.6.7. [Man86, Theorem 26.2.] Let V be a del Pezzo surface of degree d given by the
blow-up Blp1,…,p9−d ℙ

2 and let ℎ and ei denote the generators of Pic(V ) as in Lemma 2.1.6.4. Then,
an exceptional curve in V is given as one of the following:

(i) the exceptional divisor corresponding to pi: ei;

(ii) the strict transform of a line passing through two of the points pi: l − ei − ej ;

(iii) the strict transform of a conic passing through five of the points pi: 2l −
∑

5 ei;

(iv) the strict transform of a cubic passing through seven of the points pi such that one of them
is a double point: 3l − 2ei −

∑

6 ej ;

(v) the strict transform of a quartic passing though eight of the points pi such that three of them
are double points: 4l − 2

∑

3 ei −
∑

5 ej ;

(vi) the strict transform of a quintic passing through eight of the points pi such that six of them
are double points: 5l − 2

∑

6 ei −
∑

2 ej ;

(vii) the strict transform of a sextic passing through eight of the points pi such that seven of
the are double and one of them is a triple point: 6l − 3ei − 2

∑

7 ej .

In particular, the number nd of exceptional curves on V ≅ Blp1,…,p9−d ℙ
2 is given as follows:

d 1 2 3 4 5 6 7 8 9
nd 240 56 27 16 10 6 3 1 0

◾

We have prepared tools to compute the cone of curves for del Pezzo surfaces. First of all, if V = ℙ2,
then since N1(ℙ2) = ℝ[L] for a line L, we have NE(ℙ2) = NE(ℙ2) = ℝ>0[L]. Similarly, if V = ℙ1 × ℙ1,
then since N1(ℙ1 × ℙ1) = ℝ[L1] + ℝ[L2] for lines L1 = ℙ1 × {p2} and L2 = {p1} × ℙ1, we have
NE(ℙ1 × ℙ1) = NE(ℙ1 × ℙ1) = ℝ>0[L1] +ℝ>0[L2]. The rest are given as follows:
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Lemma 2.1.6.8. Let V ̸≅ ℙ1 × ℙ1 be a del Pezzo surface of degree d ≤ 8. Then, there exists nd
(−1)-curves Ci ⊂ V such that

NE(V ) = NE(V ) =
nd
∑

i=1
ℝ>0[Ci],

where nd is the integer given in Lemma 2.1.6.7.
◾

Proof. First of all, since −KV is ample by definition, NE(X) ⧵ {0} ⊂ N1(X)−KX>0 by Kleiman’s
ampelness criterion (Theorem A.4.6). Then, by the cone theorem, we have countably many Ci ⊂ V
such that

NE(V ) = NE(V ) =
∑

i
ℝ>0[Ci].

Now, since V is neither isomorphic to ℙ2 nor a ruled surface, the proof of Theorem 2.1.5 shows that
Ci is a (−1)-curve. Hence, there are only nd curves Ci by Lemma 2.1.6.7. ◽

▬

Now, it is natural to ask what happens if we blow up 9 points.

Example 2.1.7. [KM98, Example 1.23 (4)] Let X → ℙ2 be the blow-up of ℙ2 at the nine base points of a
pencil of cubic curves, i.e. at {p0,… , p8} = C1 ∩C2 for cubic curves C1, C2 and suppose all members of the
pencil are irreducible. Then, we have infinitely many (−1)-curves on X. Let � ∶ X → ℙ1 be the morphism
given by the pencil of cubics. Then, E0,… , E8 are sections. Now, since generic fibers of � are elliptic
curves, they become an abelian group by choosing the intersection with E0 to be 0. Hence, the translation
by (intersections with) E1,… , E8 generates a subgroup of the automorphim group of generic fibers which is
isomorphic to ℤ8 and extends to a subgroup of Aut(X). Hence, f (E0) for f ∈ Aut(X) give infinitely many
(−1)-curves that are all in distinct classes inN1(X) by the construction of the automorphism. ▬

Now, as in the case of relatively minimal models, we can consider a sequence of contractions and we can
see such a sequence terminates by looking at the Picard number. More precisely:

Theorem 2.1.8. [KM98, Theorem 1.29.] Let X be a smooth projective surface. Then, there is a sequence
of contractions X → X1 →⋯ → Xn = X′ such that X′ satisfies exactly one of the following conditions:

(i) KX′ is nef;

(ii) X′ is a minimal ruled surface;

(iii) X′ ≅ ℙ2.

▬

A proof is done in the following construction.

Definition 2.1.9. If KX′ is nef above, then X′ is called a (surface) minimal model of X. It turns out that
in this case the morphism X → X′ is unique (in particular, does not depend on the choice of extremal rays),
i.e., X′ is determined by X. ▬

Remark 2.1.10.
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(i) Suppose X is a non-singular surface containing a (−1)-curve. Then, since we have (KX ⋅ C) = −1
by the adjunction formula, X is not nef. Hence, a minimal model of surface is a relatively minimal
model.

(ii) The counter-example for the uniqueness of relatively minimal model in Remark 2.0.5 does not work
here since neither ℙ2 nor ℙ1 × ℙ1 is a minimal model.

▬

Construction 2.1.11. [KM98, Summary 1.31.] The following is the complete lists of the 2-fold minimal
model program:

Step 0. We have a smooth projective surface X.

Step 1. If KX is nef, then go to Step 5. Otherwise, Theorem 2.1.3 yields a KX-negative extremal ray
R ⊂ NE(X).

Step 2. By Theorem 2.1.5, the contraction contR ∶ X → Z exists. We have two possibilities.

Step 3. If dimZ = dimX, then �(Z) = �(X) − 1, so replace X with Z and go back to Step 1.

Step 4. If dimZ < dimX, then Theorem 2.1.5 (ii),(iii) determine the structure of X.

Step 5. If KX is nef, then we stop. These surfaces should be investigated by other methods.

▬

The minimal model program aims at listing up similar step-by-step approaches for higher dimensional
varieties. Of course there are several difficulties. For example, as we will see in the next section, in the 3-fold
case we need to deal with singular points while in the 2-fold case we stayed in the smooth category.

2.2 The 3-fold minimal model program and singularities
We are going to follow the surface minimal model program, but along the way, we need a lot of modifica-
tions. The most remarkable one for us is that we need to consider singularities. We can observe this by the
classification of contractions of extremal rays, which corresponds to Theorem 2.1.5 in the surface minimal
program.

Theorem 2.2.1. [KM98, Theorem 1.32.] Let X be a non-singular projective 3-fold (over ℂ) and contR ∶
X → Y the contraction of aKX-negative extremal rayR ⊂ NE(X). The following is the list of all possibilities
for contR:

E: (Exceptional) dim Y = 3, contR is birational and there are five types of local behaviour near the
contracted surface:

E1: contR is the inverse of the blow-up of a smooth curve in the smooth 3-fold Y .
E2: contR is the inverse of the blow-up of a smooth point in the smooth 3-fold Y .
E3: contR is the inverse of the blow-up of an ordinary double point of Y (Definition 3.2.2).
E4: contR is the inverse of the blow-up of a point, which is formally isomorphic to an isolated cA1-

singularity (0 ∈ {x2 + y2 + z2 +w3 = 0}) (cf. Definition 3.1.1 and 4.2.1).
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E5: contR contracts a smooth ℙ2 a point of multiplicity 4 on Y , which is formally isomorphic to the
germ (0 ∈ A3∕ 12 (1, 1, 1)) (Example 3.3.5).

C: (Conic bundle) dimY = 2 and contR is a fibration whose fibers are plane conics.

D: (Del Pezzo fibration) dimY = 1 and general fibers of contR are Del Pezzo surfaces (Example 2.1.6).

F : (Fano variety) dim Y = 0, X is a Fano variety, i.e. −KX is ample.

▬

Remark 2.2.2. [KM98, p.29] The cases C andD give structures that we understand sufficiently well. Case F
is also sufficient since we have a complete list of the occurring Fano 3-folds (e.g. [Isk80]). The cases E1 and
E2 are analogous to Theorem 2.1.5 (i). In particular, the resulting variety Y remains in the smooth category,
i.e. we can apply Theorem 2.2.1 again. However, our strategy does not work when we encounter E3, E4, and
E5 since they produce a singular variety Y . Hence, although the surface minimal model program can be done
in the smooth category, we need to consider some singularities for the higher dimensional generalization. ▬

When we allow singularities, the classification of contractions is given as follows:

Theorem 2.2.3. [KM98, Proposition 2.5.] Let X be a normal ℚ-factorial projective variety and let contR ∶
X → Y be the contraction of an extremal ray R ⊂ NE(X). Then, we have one of the following:

(i) (Fiber type contraction) dimX > dim Y .

(ii) (Divisorial contraction) f is birational and Ex(f ) is an irreducible divisor.

(iii) (Small contraction) f is birational and Ex(f ) has codimension ≥ 2.

▬

Remark 2.2.4. [KM98, 2.6.] Let me comment on some implications of each type of contractions:

(i) (Fiber type contraction) We can interpret this as reducing the problem ofX to the study of the lower
dimensional variety Y together with the fibers of f (cf. Construction 2.1.11 Step 4). Moreover, the
fibers are nice in the sense that they are analogous to ℙ1 and the Del Pezzo surfaces in the previous
cases.

(ii) (Divisorial contraction) In this case we can see that Y is againℚ-factorial and hence �(Y ) ≤ �(X)−1
(indeed �(A) = �(X) − 1). Hence, we can apply Theorem 2.2.3 (cf. Contraction 2.1.11 Step 3).

(iii) (Small contraction) This is the worst case since KY is not even ℚ-Cartier. Hence, we cannot apply
Theorem 2.2.3. In this case, we apply an operation called a flip, which is an algebraic analogue of
topological surgery; instead of contracting the codimension ≥ 1 subvariety E = Ex(f ) ⊂ X, we
replace E with another codimension ≥ 2 subvariety E+ to obtain a new variety (X ⧵ E) ∪ E+. The
details of flips are beyond the scope of this thesis. For example, see [KM98, Example 2.7.] and later
parts of the same textbook.

▬

Now, let us introduce some terminology regarding singularity (See also §3.1).

Definition 2.2.5. Let X be a variety.
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(i) A resolution ofX is a non-singular variety Y together with a birational proper morphism f ∶ Y →
X.

(ii) A resolution f ∶ Y → X is said to be a log resolution if Ex(f ) is a simple normal crossing divisor,
i.e. Ex(f ) is a Weil divisor and we can write Ex(f ) =

∑

i diEi with Ei non-singular and intersecting
everywhere transversely.

(iii) A resolution f ∶ Y → X is said to be a minimal resolution if for any resolution f ′ ∶ Y ′ → X of
X, there exists a morphism � ∶ Y ′ → Y such that f ′ = f◦�.

▬

We have the following existence results.

Theorem 2.2.6 (Hironaka). [KM98, Theorem 0.2.] A log resolution exists for any variety over a field of
characteristic zero. ▬

Lemma 2.2.7. [Kol07, Theorem 2.26] Let Y be a surface. Then, a minimal resolution of Y exists and is
unique up to isomorphism. Furthermore, a resolution f ∶ X → Y is minimal if and only if KX is f -nef, i.e.
(KX ⋅E) ≥ 0 for every f -exceptional divisor. In particular, we can obtain a minimal resolution by taking one
resolution f ∶ X0 → Y and contracting all the f -exceptional curves E with (E ⋅KX) < 0 by Castelnuovo’s
contraction theorem. ▬

Example 2.2.8. Note by the adjunction formula for curves, if (C ⋅ C) < −1, then (C ⋅ KX) ≥ 0. Hence,
a resolution f ∶ Y → X is the minimal resolution if (E ⋅ E) ≤ −2 for every f -exceptional curve E. In
particular, the resolution of the affine quadric cone in Lemma 1.4.5 is the minimal resolution. ▬

If Y is a normal variety such that mKY is Cartier for some m > 0, then the (relative) canonical class
allows us to measure how singular Y is (a priori) with respect to a resolution X → Y as follows.

Definition 2.2.9. LetX be a normal variety withmKX Cartier form > 0, Y a normal variety, and f ∶ Y → X
a (not necessarily proper) birational morphism. Then, for a Weil divisor E on Y , we define the discrepancy
of E with respect to X to be the rational number a(E,X) (with m ⋅ a(E,X) ∈ ℤ) given as the coefficient of
E in KY ∕X = KY − f ∗KX . Note that if f is a resolution (i.e. f is proper and Y is non-singular), then we
can write

KY ∕X =
∑

E∶irreducible f -exceptional
a(E,X)E.

Now, define the discrepancy of X to be

discrep(X) ∶= min
E∶exceptional

a(E,X),

where E runs through all the irreducible exceptional divisors for all birational morphisms f ∶ Y → X with
Y normal. As we will see, the larger discrep(X) implies that the milder singularities. Keeping this in mind,
we say X is:

(i) terminal if discrep(X) > 0.

(ii) canonical if discrep(X) ≥ 0.

(iii) log terminal if discrep(X) > −1.



2.2. THE 3-FOLD MINIMAL MODEL PROGRAM AND SINGULARITIES 26

(iv) log canonical if discrep(X) ≥ −1.

▬

Remark 2.2.10. [KM98, Remark 2.23.] Under the notation of the preceding definition, we can also define
the discrepancy a(E,X) of the irreducible exceptional divisor E with respect to Y as follows: Take a general
point e ∈ E and local coordinates {yi} so that E = {y1 = 0}. Then, locally near e,

f ∗(local generator of X(mKX)) = y
m⋅a(E,X)
1 (unit)(dy1 ∧⋯ ∧ dyn)⊗m,

which is a local illustration of the previous definition (e.g. see the last part of the proof of Lemma 1.4.5 or
Example 3.3.5). Now, note the local ring E,Y ⊂ k(Y ) = k(X) is a discrete valuation ring, where k(X)
denotes the field of rational functions on X, which corresponds to a valuation v(E, Y ) of k(X). Note if
we have another data (f ′, Y ′, E′) with v(Y ′, E′) = v(Y , E), then the rational map Y → X Y ′ is an
isomorphism at the generic points of E and E′. Hence, by the local definition of the discrepancy, we see that
a(E,X) = a(E′, X) and hence a(E,X) only depends on the valuation v(E, Y ). In this sense, we omit f and
Y from the notation of a(E,X). ▬

Remark 2.2.11. [KM98, Corollary 2.31.] The reason whywe do not consider the case when discrep(X) < −1
is because once you have a(E,X) = −1 − c for some E and c > 0, you can construct a resolution Yn → X
with exceptional divisor En and a(En, X) = −cn for any n by repeatedly blowing up, i.e. discrep(X) = −∞.
Indeed, we can show that we have either

(i) discrep(X) < −∞, or

(ii) −1 ≤ discrep(X) ≤ 1.

▬

Now, since it is quite hard to consider all the possible exceptional divisors to compute the discrepancy,
we appreciate the following result in this thesis:

Theorem 2.2.12. [KM98, Corollary 2.32.] Let Y be a normal variety such that mKX is Cartier for some
m > 0 and f ∶ X → Y be a resolution with exceptional divisors Ei ⊂ Ex(f ).

(i) Assume that 0 ≤ mini{a(Ei, X)} ≤ 1. Then,

discrep(X) = min
i
{a(Ei, X)}.

(ii) Assume f is a log resolution and assume a(Ei, X) ≥ −1 for all i. Then,

discrep(X) = min
{

min
i
{a(Ei, X)}, 1

}

.

Hence, it is in general sufficient to find one log resolution (and such a resolution exists by Hironaka). ▬

Example 2.2.13. Here is a list of some examples we have in this thesis.

(i) For any non-singular varietyX, we have discrep(X) = 1 by considering the blow-up in codimension
2 (Lemma A.2.7).

(ii) For the quotient varietyA3∕ 12 (1, 1, 1) (or the cone over the Veronese surface), we have discrep(X) =
1
2 , i.e. X has a terminal singularity at the origin (Example 3.3.5).
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(iii) For the affine quadric cone X (or more generally Du Val singularities (Theorem 3.4.1)), we have
discrep(X) = 0, i.e. X has a canonical singularity at the origin (Lemma 1.4.5).

(iv) For the affine cone of a non-singular hypersurface X of degree d in ℙn, we have discrep(X) =
n − 1 − d if d ≤ n or discrep(X) = −∞ otherwise (Example 3.2.5). Hence, X has:

(a) a terminal singularity if d ≤ n − 2,
(b) a canonical singularity if d = n − 1,
(c) a log terminal singularity if d < n − 1,
(d) a log canonical singularity if d = n,
(e) a “bad” singularity if d > n.

Note this is quite intuitive since the higher multiplicity of a singularity implies the less mild singularity.

▬

Now, we go back to the minimal model program. In analogy with the surface minimal model program,
we define higher dimensional minimal models as follows:

Definition 2.2.14. LetX be a normal and proper variety. Then,X is said to beminimal or aminimal model
if

(i) X has terminal singularities, and

(ii) KX is nef.

If Y is a smooth proper variety birational to X, then X is also said to be a minimal model of Y . ▬

Remark 2.2.15. Unlike surface minimal models, higher dimensional are not unique. ▬

Now, we have introduced all the terminology we need to sketch the strategy of the higher dimensional
minimal model program.

Construction 2.2.16 (Minimal Model Program).

Step 0. (Initial datum) We have a projective variety X = X0 with only ℚ-factorial and terminal sin-
gularities. We inductively construct intermediate varieties Xi and then stop with a finial variety X∗.
Suppose that we have constructed Xi.

Step 1. (Preparation) If KXi is nef, then there is nothing to do and go to Step 3.2. Otherwise, we
establish two results:

(a) (Cone Theorem) A generalization of the cone theorem for non-singular projective varieties (The-
orem 2.1.3) thankfully holds ([KM98, Theorem 3.7.]), which locates aKXi -negative extremal ray
Ri ⊂ NE(Xi) if KXi is not nef. (We try to construct a theory that works with any choice of Ri,
but it is sometime convenient to choose Ri cleverly.)

(b) (Contraction of an extremal ray) Let contRi ∶ Xi → Yi denote the contraction of Ri in Theorem
2.2.3.

Step 2. By Theorem 2.2.3, we have three possible types of contractions contRi ∶ Xi → Yi, two of which
are used to produce a new variety Xi+1 as follows.
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(a) (Divisorial contraction) If contRi ∶ Xi → Yi is a divisorial contraction as in Theorem 2.2.3 (ii),
then set Xi+1 = Yi. We can show that Yi only admits ℚ-factorial and terminal singularities, i.e.
we can go back to Step 0.

(b) (Flipping contraction) If contRi ∶ Xi → Yi is a small contraction as in Theorem 2.2.3 (iii), then
setXi+1 = X+

i , whereX
+
i is obtained by the flip of contRi . We can show thatX+

i exists and only
admits ℚ-factorial and terminal singularities (for 3-folds), i.e. we can go back to Step 0.

Step 3. (Final outcome) We hope that the procedure eventually stops and we get one of the following
two possibilities.

(a) (Fano fiber space) contRi ∶ Xi → Yi is a fiber type contraction as in Theorem 2.2.3 (i), then set
X∗ = Xi. We hope that studies of the lower dimensional variety Yi an of the fibers provide new
methods to study X∗.

(b) (Minimal model) If KXi is nef, then we set X∗ = Xi. We hope that the semi-positivity of the
canonical class helps us to understand X∗.

▬

Remark 2.2.17. First of all, this strategy is known to work only for surfaces and 3-folds. In higher dimensions,
it is not known whether we can always perform the flip operation in Step 2 (b). It is also possible that we
encounter an infinite sequence of flips. Finally, we also do not know whether the resulting X∗ is indeed of
any use since we improve the global structure at the cost of introducing singularities. ▬

Although there are my uncertainties in higher dimensions, these go beyond the scope of the thesis. In
the rest of the thesis, we focus on studies of singularities in surfaces and 3-folds to make sure that we are
comfortable with the terminal (or canonical) singularity category.



Chapter 3

Resolution of surface singularity

3.1 Terminology
First, let me introduce some basic languages to talk about the local behavior of singularities.

Definition 3.1.1.

(i) Consider the category whose objects are the pairs (x ∈ X) of a variety X and a point x ∈ X and
whose morphism (x ∈ X) → (y ∈ Y ) is an equivalence class of morphisms f ∶ U → Y of varieties
with U an open neighborhood of x and f (x) = y, where (f, U ) ∼ (f ′, U ′) if fx = f ′x ∶ Y ,y → X,x,
i.e. f |V = f ′|V for some open neighborhood V ⊂ U ∩ U ′ of x. An isomorphism class of objects
(x ∈ X) of the category is called a germ of a point and denoted by (x ∈ X) by abuse of notation.
If a point is a singularity, then (x ∈ X) is said to be a germ of a singularity. Note for any open
neighborhood U of x ∈ X, we have (x ∈ X) ≅ (x ∈ U ).

(ii) Let f ∶ (x ∈ X) → (y ∈ Y ) be a morphism of germs of a point. Then, f is said to be a formal
isomorphism if f induces an isomorphism ̂Y ,y

∼
→ ̂X,x of the completions. If there exists a formal

isomorphism between germs (x ∈ X) and (y ∈ Y ), then (x ∈ X) and (y ∈ Y ) are said to be formally
isomorphic and denoted by (x ∈ X) ≅fm (y ∈ Y ).

▬

Remark 3.1.2. Let me quickly mention some relations between singularities in algebraic varieties and those
in analytic spaces. First, we can define germs in an analytic space in the same way as above. Then, we have
the following.

Theorem 3.1.2.1 (Hironaka, Rossi, Artin). [Ish14, Theorem 4.2.3.] Let (x ∈ X) and (y ∈ Y ) be
germs of analytic spaces. Then, the following are equivalent:

(i) (x ∈ X) = (y ∈ Y ).

(ii) There exists an isomorphism ̂X,x ≅ ̂Y ,y of ℂ-algebras.

(iii) There exists an isomorphism X,x ≅ Y ,y of ℂ-algebras.

In other words, germs of a point in an analytic space are isomorphic if and only if they are formally
isomorphic. ◾

29



3.1. TERMINOLOGY 30

Now, note that an algebraic variety X over ℂ can be also viewed as an analytic space Xan.
Theorem 3.1.2.2 (Artin’s Algebrization Theorem). [Ish14, Theorem 4.2.4.] Let (x ∈ X) be a germ
of an isolated singularity in an analytic space. Then, there exists an algebraic variety Y over ℂ and
a point y ∈ Y such that (x ∈ X) = (y ∈ Y an). ◾

Hence, as long as we consider an isolated singularity of an analytic space, we may view it as an isolated
singularity in an algebraic variety. ▬

The following corollary of [Eis95, Theorem 7.16.] shows how we can produce formally isomorphic
singular points.

Lemma 3.1.3. Let ℎ1,… , ℎn ∈ k[[x1,… , xn]] be non-unit formal power series whose linear terms are
linearly independent, i.e. generate ⟨x1,… , xn⟩. Then,

� ∶ k[[x1,… , xn]] → k[[x1,… , xn]], f ↦ f (ℎ1,… , ℎn)

defines a k-homomorphism and furthermore � is an k-isomorphism. ▬

First, we have some mundane examples.

Example 3.1.4. Let ℎ1,… , ℎn ∈ m ∶= ⟨x1,… , xn⟩k[x1,…,xn] be polynomials whose linear terms are linearly
independent. Then, for any f ∈ m, we have a k-isomorphism:

k[[x1,… , xn]]∕⟨f ⟩
∼
→ k[[x1,… , xn]]∕⟨f (ℎ1,… , ℎn)⟩,

i.e. a formal isomorphism

(0 ∈ Spec k[x1,… , xn]∕⟨f⟩)
∼fm

→ (0 ∈ Spec k[x1,… , xn]∕⟨f (ℎ1,… , ℎn)⟩).

▬

We also have a bit more interesting example where ℎi are genuinely formal power series.

Example 3.1.5. [Har77, Example I.5.6.3.] Let f (x, y) = y2 − x2(x + 1) and g(x, y) = xy. I claim that we
have

(0 ∈ Spec k[x, y]∕⟨f ⟩) ≅fm (0 ∈ Spec k[x, y]∕⟨g⟩).

First, notice f (x, y) = (y + x
√

1 + x)(y − x
√

1 + x). Then, the formal Taylor expansion of
√

1 + x and
Lemma 3.1.3 suffice for a proof. We can also construct a formal isomorphism directly, which is essentially
the same as above but also illustrates an idea behind Lemma 3.1.3. To construct an isomorphism, first notice
that we have f (x, y) = (y + x)(y − x) − x3 and let us write

ℎ1(x, y) = y + x + ℎ1,2 + ℎ1,3 +⋯
ℎ2(x, y) = y − x + ℎ2,2 + ℎ2,3 +⋯ ,

where ℎi,n denotes the homogeneous part of ℎi of degree n. Then, we have

g(ℎ1, ℎ2) = (y2 − x2) + ((y − x)ℎ1,2 + (y + x)ℎ2,2) + ((y − x)ℎ1,3 + ℎ1,2ℎ2,2 + (y + x)ℎ2,3) +⋯ ,

where each parenthesis indicates the homogeneous part. Now, comparing f and g(ℎ1, ℎ2), we need to have

(y − x)ℎ1,2 + (y + x)ℎ2,2 = −x3, (y − x)ℎ1,3 + ℎ1,2ℎ2,2 + (y + x)ℎ2,3 = 0, … ,
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which can be inductively constructed because y − x and y + x generate ⟨x1,… , xn⟩. Note that the reason
why the induction works well in the preceding example is that in each homogeneous part there are only two
undetermined homogeneous polynomials that furthermore appear as coefficients of the generators (x + y)
and (x − y). This illustrates the importance of the supposition in Lemma 3.1.3. ▬

In the following sections, we observe resolutions of some basic surface singularities.

3.2 Cones over hypersurfaces
First, let us recall the following definition.

Definition 3.2.1. Let f1,… , fm ∈ k[x1,… , xn] be homogeneous polynomials and letX0 = Proj k[x1,… , xn]∕⟨f1,… , fn⟩
be a projective variety. Then, the (affine) cone X over the projective variety X0 is defined to be X0 =
Spec k[x1,… , xn]∕⟨f1,… , fn⟩. ▬

Now, we introduce the following simplest cone singularities.

Definition 3.2.2. A germ of singularity (x ∈ X) is said to be an ordinary double point if it is formally
isomorphic to the germ (0 ∈ {x21 +⋯ + x2n = 0} ⊂ An). ▬

The singularity (0 ∈ Q) of the affine quadric cone Q (Example 1.4) at the origin is a surface ordinary
double point. Indeed, an ordinary double point (in any dimension) can be resolved just by blowing up the
singular point once as we saw in Lemma 1.4.5. Recalling the way got the affine chart description, we indeed
have the following.

Lemma 3.2.3. Let f1,… , fl ∈ k[x0,… , xn] be a homogeneous polynomial and suppose the projective
varietyX0 = Proj k[x0,… , xn]∕⟨f1,… , fl⟩ is non-singular. Then, the affine coneX overX0 has the isolated
singularity at the origin and the blow-up of X at the origin gives a resolution. Furthermore, the exceptional
divisor is isomorphic to X0. ▬

Example 3.2.4. Consider the cone X = Spec k[x, y, z]∕⟨xd + yd + zd⟩ and let � ∶ X̃ → X be the blow-up
of X at the origin. Then, since the only thing that changes in the computation of KX̃∕X is the multiplicity of
the origin, we see that KX̃∕X = 2 − d. Hence, if d = 3, then X is log canonical. However, even if d = 4,
which looks not too bad, we obtain a bad singularity with discrep(X) = −∞. ▬

Now, by varying the dimension of the ambient space and the multiplicity of the origin in the proof of
Lemma 1.4.5 (also cf. Lemma A.2.7), we obtain the following:

Lemma 3.2.5. [oM18, p.11] Let f ∈ k[x1,… , xn] be a homogeneous polynomial of degree d and suppose
the hypersurface X0 = Proj k[x1,… , xn]∕⟨f ⟩ is non-singular. Let X̃ → X be the blow up of the affine cone
X over X0 at the origin with exceptional divisor E. Then, we have

KX̃∕X = ((n − 1) − d)E = (n − 1 − d)E

▬

Remark 3.2.6. [Mil80, Example 1.5.(1)] Again we have a direct proof of Lemma 3.2.5 as in the proof of
Lemma 1.4.5. First, take a canonical form

s = ResAn|X
dx1 ∧⋯ ∧ dxn

f
.
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Also, in the affine chart Spec k[x1, x′2,… , x′n] of Bl0A
n we can take a canonical form

s′ = ResBl0 An|X̃
dx1 ∧ dx′2 ∧⋯ ∧ dx′n

f ′1
,

where f ′(x1, x′2,… , x′n) =
f (x1,x′2x1,…,x′nx1)

xd1
. Hence, noting

�∗(dx1 ∧⋯ ∧ dxn) = xn−11 dx1 ∧ dx′2 ∧⋯ ∧ dx′n

we have a relation
�∗s|Spec k[x1,x′2,…,x′n]

= xn−1−d1 s′

as desired. ▬

3.3 Quotient singularities
We can also create a singularity from a variety with a group action by taking the quotient. Indeed, we can
also view the ordinary double point as a quotient singularity. In this thesis, we will only consider quotients
of ℂ-varieties by complex reductive groups, e.g. GLn(ℂ), SLn(ℂ), and finite groups (cf. Appendix B.2).

Definition 3.3.1. Let (x ∈ X) be a germ of the singularity in a (complex) varietyX. Then,X is said to have
a quotient singularity if there are a smooth germ (0 ∈ Y ) and a finite groupG acting on some neighborhood
U ⊂ Y of 0 such that (x ∈ X) ≅fm (0 ∈ U∕G) =∶ (0 ∈ Y )∕G. ▬

Example 3.3.2. [Kol08, Exercise 72] Let G be a finite group. Then, giving a finite-dimensional representa-
tion � ∶ G → GLn is equivalent to defining a linear G-action on An, which gives the quotient variety An∕G.
Suppose that the G-action is effective and fixed point free outside of a codimension 2 set. Then, An∕G is log
terminal. Furthermore, if G ⊂ SLn, then the canonical class of An∕G is Cartier and in particular An∕G is
canonical. ▬

Construction 3.3.3. [Kol08, Exercise 72] Let �m = ⟨g⟩ denote a cyclic group of order m. Then, any cyclic
action � on An can be diagonalized and written as

�(g)(x1,… , xn) = ("a1x1,… , "anxn),

where " = e2�i∕m and 0 ≤ ai < m for i = 1,… , n. Define the age of g (with respect to �) as age(g) =
1
m (a1 +⋯ + an). The quotient by this action is often denoted by

An∕ 1
m
(a1,… , an).

A singularity of this type is called a cyclic quotient singularity. We have a nice characterization criterion
for cyclic quotient singularities.

Lemma 3.3.3.1 (Reid-Tai Criterion). A cyclic quotient singularity An∕�m is canonical (resp. ter-
minal) iff the age of every non-identity element g ∈ �m is ≥ 1 (resp. > 1). ◾

▬
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Example 3.3.4. The quotient varietyA2∕ 12 (1, 1) is isomorphic to the affine quadric coneQ since with respect
to this �2-action,

k[x1, x2]�2 = k[x21, x1y1, y
2
1] ≅ k[y1, y2, y3]∕⟨y1y3 − y

2
2⟩.

Hence, A2∕ 12 (1, 1) has a canonical singularity at the origin and its age is indeed 1. ▬

Example 3.3.5 (The cone over the Veronese surface). (There are many interesting observations related to
this example. See [oM18, p.12], [Mil87, Example 1.3.], [Mil87, Example 1.8.(ii)], [Mil80, Example 1.5.(ii)],
and mathoverflow answers [Kovb] and [FL]).) Consider the quotient space X = A3∕ 12 (1, 1, 1). Then, since
the age is 3∕2, X should have a terminal singularity. Now, as above

k[x1, x2, x3]�2 = k[x21, x
2
2, x

2
3, x1x2, x2x3, x3x1]

≅ k[y0, y1, y2, y3, y4, y5]∕I,

where I = ⟨y0y1 − y23, y1y2 − y
2
4, y2y0 − y

2
5, y0y4 − y5y3, y1y5 − y3y4, y2y3 − y4y5⟩. In particular, X is iso-

morphic to the affine cone over the Veronese surface (i.e. the image of the embedding ℙ2 ↪ ℙ5 by the very
ample line bundle ℙ2 (2)). Let p ∶ A3 → X = Spec k[y0, y1, y2, y3, y4, y5]∕I be the quotient.

First of all, 2KX is a Cartier divisor, noting that the rational 3-form

! =
(dy0 ∧ dy3 ∧ dy5)⊗2

y30

on X gives a basis of (Ω3X)
⊗2 since

p∗! =
(2x31dx1 ∧ dx2 ∧ dx3)

⊗2

x61
= 4(dx1 ∧ dx2 ∧ dx3)⊗2,

which is a basis of (Ω3
A3
)⊗2 and p is étale outside of the vertex. Now, consider the blow-up � ∶ X̃ → X =

Spec k[y0, y1, y2, y3, y4, y5]∕I at the origin with exceptional divisor E. We can check X̃ is non-singular as
usual. Now, we are going to see that the discrepancy a(E,X) is 12 > 0 in two ways.

(Canonical forms): Take the standard affine chart U0 of Bl0A6y0,…,y5
with py0 ≠ 0, i.e. the chart given

by the substitutions y0 = y0, y1 = y′1y0,… , y5 = y′5y0. Then, X̃ ∩ U0 is given by

{y′1 − y
′
3
2 = y′1y

′
2 − y

′
4
2 = y′2 − y

′
5
2 = y′4 − y

′
5y
′
3 = y

′
5 − y

′
3y
′
4 = y

′
2y
′
3 − y

′
4y
′
5 = 0} ⊂ U0.

Hence, we have an isomorphism U0 ≅ Spec k[y0, y′3, y
′
5] given by

(y0, y′3, y
′
5)↦ (y0, y′3

2, y′5
2, y′3, y

′
3y
′
5, y

′
5).

Here, note that the exceptional divisor is still given by {y0 = 0} in Spec k[y0, y′3, y
′
5]. Thus, since we

have

�∗!|Spec k[y0,y′3,y′5] =
(y20dy0 ∧ dy

′
3 ∧ dy

′
5)
⊗2

y30
= y0(dy0 ∧ dy′3 ∧ dy

′
5)
⊗2,

we see the discrepancy is 12 .
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(Adjunction formula): First, write KX̃ = �∗KX + dE. Then, we have KX̃ + E = �∗KX + (d + 1)E
and hence by the adjunction formula and the fact that �∗KX|E = 0, we have KE = (d + 1)E|E . Now,
since E is isomorphic to the Veronese surface by Lemma 3.2.3, we have E(KE) ≅Kℙ2 = ℙ2 (−3).
Furthermore, since −E|E is the restriction of the hyperplane section of the exceptional divisor ℙ5 to
E, it is a conic on E, i.e. E(E) ≅ ℙ2 (−2). Hence, we have −3 = −2(d + 1), i.e. d =

1
2 .

▬

3.4 Du Val singularities
Theorem 3.4.1. [KM98, Theorem 4.20, 4.22.] Let (0 ∈ X) be a germ of a normal surface singularity. We
say (0 ∈ X) is a Du Val singularity if one (and hence all) of the following equivalent conditions:

(i) (0 ∈ X) is a canonical singularity.

(ii) For the minimal resolution f ∶ Y → X (cf. Lemma 2.2.7), we have (KY ⋅ Ei) = 0 for every
f -exceptional curve Ei ⊂ Y .

(iii) (0 ∈ X) is formally isomorphic to a singularity defined by one of the following equations:

A. The singularity An (n ≥ 1) has equation x2 + y2 + zn+1.
D. The singularity Dn (n ≥ 4) has equation x2 + y2z + zn−1 = 0.
E. The singularity E6 (resp. E7, resp. E8) has equation x2 + y3 + z4 = 0, (resp. z2 + y3 + yz3 = 0,

resp. x2 + y3 + z5 = 0).

▬

Now, the following notion enables us to describe a resolution of a singularity:

Definition 3.4.2. Let C =
⋃

i Ci be a collection of proper curves on a smooth surface U . The dual graph Γ
of C is defined as follows:

(i) The vertices of Γ are the curves Ci.

(ii) The vertex Ci is labeled by bi = −(Ci ⋅ Ci).

(iii) The vertices Ci and Cj are connected with (Ci ⋅ Cj) edges.

In particular, we can define the dual graph of exceptional curves for a resolution of surface singularity. ▬

Lemma 3.4.3. [Kol08, Exercise 66.] The minimal resolutions of Du Val singularities have the following
dual graphs:

A. The singularity An (n ≥ 1) has equation x2 + y2 + zn+1 and dual graph with n vertices:

2 2 2 2

D. The singularity Dn (n ≥ 4) has equation x2 + y2z + zn−1 = 0 and dual graph with n vertices:

2 2 2 2

2

2
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E. The singularity E6 (resp. E7, resp. E8) has equation x2 + y3 + z4 = 0, (resp. z2 + y3 + yz3 = 0, resp.
x2 + y3 + z5 = 0) and dual graph with 6 (resp. 7, resp. 8) vertices:

2

2

2 2 2 2
,

⎛

⎜

⎜

⎜

⎜

⎝

resp.
2

2

2 2 2 2 2
, resp.

2

2

2 2 2 2 2 2

⎞

⎟

⎟

⎟

⎟

⎠

▬

Proof. First, note a resolution represented by one of the dual graphs above is indeed the minimal resolution
by Example 2.2.8. Also, taking partial derivatives, it is clear that the affine variety defined by one of the
equations above has the only singularity at the origin. In the following, I will only show some cases, but
these contain all the necessary ideas to do other resolutions that I will not write down.

A1: This is the affine quadric cone. Hence, by Lemma 1.4.5, the dual graph is

2

As I remarked, I will omit some details already computed in the proof of Lemma 1.4.5.

A2 Let X = k[x, y, z]∕⟨x2 + y2 + z3⟩ and let � ∶ X̃ → X be the blow-up at the origin. Consider a
standard affine chart Spec k[x, y′, z′] given by x = x, y = y′x, z = z′x. Then, the birational transform
of X is given by

{1 + y′2 + xz′3 = 0},

which is non-singular, and the exceptional divisor is given by two lines

{1 + y′2 + xz′3 = 0} ∩ {x = 0} ≅ {y′ =
√

−1, x = 0} ⊔ {y′ = −
√

−1, x = 0}.

By symmetry, in the affine chart k[x′, y, z′], the birational transform is given by

{x′2 + 1 + yz′3 = 0},

which is non-singular, and the exceptional divisor is given by two lines

{x′2 + 1 + yz′3 = 0} ∩ {y = 0} ≅ {x′ =
√

−1, y = 0} ⊔ {x′ = −
√

−1, y = 0}.

Finally, in the affine chart k[x′, y′, z], the birational transform is given by

{x′2 + y′2 + z = 0},

which is non-singular, and the exceptional divisor is given by two lines intersecting at the origin:

{x′2 + y′2 + z = 0} ∩ {z = 0} ≅ {(x′ +
√

−1y′)(x′ −
√

−1y′) = 0, z = 0}.

Hence, noting that globally in Bl0A3, the two exceptional lines are given by

E± ∶ {px ±
√

−1py = 0, x = y = z = 0} ⊂ Bl0A3,
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the birational transform of X has one An−2 singularity and the two exceptional lines intersect at the
singularity transversely. Thus, we obtain the following dual graph for this resolution:

Now, it remains to show (E± ⋅E±) = −2. As in Lemma 1.4.5, consider a principal divisor (z◦�), where
z is a rational function on X and hence ((z◦�) ⋅ E±) = 0. Then, in the affine chart Ux = k[x, y′, z′],
the rational function z◦� = z′x vanishes (with multiplicity 1) on {x = 0} = E ∩ Ux and

{z′ = 0} ∩ Ux = {y′ =
√

−1, z′ = 0} ∪ {y′ = −
√

−1, z′ = 0} = (C+ ∩ Ux) ∪ (C− ∩ Ux),

where
C± = {py = ±

√

−1px, y = ±
√

−1x, pz = z = 0} ⊂ Bl0A3.

Similarly, in k[x′, y, z′], we see that z◦� vanishes on E and C± with multiplicity 1. Since the union of
these charts only miss a point in X̃, which is of codimension 2, we conclude

(z◦�) = E + C+ + C−.

Hence,

0 = ((z◦�) ⋅ E)
= (E ⋅ E) + (C+ ⋅ E) + (C− ⋅ E)
= ((E+ + E−) ⋅ (E+ + E−)) + 2
= (E+ ⋅ E−) + 2(E+ ⋅ E−) + (E− ⋅ E−) + 2
= (E+ ⋅ E−) + (E+ ⋅ E−) + 4.

Since we have (E+ ⋅ E+) = (E− ⋅ E−) by symmetry, we are done and obtain the A2 diagram:

2 2

Note that C+ ∪ C− is the birational transform of {z = 0} ∩X; in general, to compute (z) it suffices to
count the multiplicity of the strict transform of {z = 0}∩X and exceptional curves as these are all the
possibilities where z vanishes.

An: Let X = k[x, y, z]∕⟨x2 + y2 + zn+1⟩ with n > 2 and let � ∶ X̃ → X be the blow-up at the origin. For
the affine charts k[x′, y, z′] and k[x, y′, z′], we can do the exactly the same computations as in A2. In
the affine chart k[x′, y′, z], the birational transform is given by

{x′2 + y′2 + zn−1 = 0},

which has anAn−2 singularity at the origin, and the exceptional divisor is given by two lines intersecting
at the origin:

{x′2 + y′2 + zn−1 = 0} ∩ {z = 0} ≅ {(x′ +
√

−1y′)(x′ −
√

−1y′) = 0, z = 0}.

Hence, noting that globally in Bl0A3, the exceptional lines glue together and are given by

E± ∶ {px ±
√

−1py = 0, x = y = z = 0} ⊂ Bl0A3,
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the birational transform of X has one An−2 singularity and the two exceptional lines intersect at the
singularity. Now, to complete the induction steps, it remains to observewhat happens to the intersection
theory of new and old exceptional divisors after the blow-up at the An−2 singularity. We consider the
blow-up as the blow-up �′ ∶ X̃′ → X′ of X′ ∶= Spec k[x′, y′, z]∕⟨x′2 + y′2 + zn−1⟩ at the origin.
Setting u = x′, v = y′, w = z, the defining equation becomes

{u2 + v2 +wn−1 = 0}

and the old exceptional divisor E becomes

{u2 + v2 = 0, w = 0} = {u =
√

−1v,w = 0} ∪ {u = −
√

−1v,w = 0}.

Now, in exactly the same way, the exceptional divisor of the blow up at the origin is given by the two
lines

E′± ∶ {pu = ±
√

−1pv, u = v = w = 0} ⊂ Bl0A3,
which intersect at ([pu ∶ pv ∶ pw], u, v, w) = ([0 ∶ 0 ∶ 1], (0, 0, 0)) (which is an An−4 singularity if
n > 4 and a smooth point otherwise). Also, the birational transform of the old exceptional divisor E
is given by the two lines

Ẽ± ∶ {pu = ±
√

−1pv, u = ±
√

−1v, pw = w = 0} ⊂ Bl0A3,

which are disjoint, i.e. (Ẽ+ ⋅Ẽ−) = 0. Furthermore, since Ẽ± andE′∓ are disjoint respectively, we have
(Ẽ± ⋅E′∓) = 0, and since Ẽ± and E′± intersect at ([pu ∶ pv ∶ pw], u, v, w) = ([±

√

−1 ∶ 1 ∶ 0], (0, 0, 0))
transversely, we have (Ẽ± ⋅ E′±) = 1. Hence, it remains to show (Ẽ± ⋅ Ẽ±) = (E′± ⋅ E

′
±) = −2. Now,

comparing the equations of Ẽ± with the equations of C± in the A2 case, we see that for a rational
function z on X, we have

(z◦�′) = (w) = E′+ + E
′
− + Ẽ+ + Ẽ−.

Then, considering the intersection of (x◦�′) with each of the exceptional lines as before, we obtain
(Ẽ± ⋅ Ẽ±) = (E′± ⋅E

′
±) = −2 as desired. In summary, we have completed the following induction step:

2 2 2 2

An−2

where the outer vertices correspond to Ẽ± and the inner vertices correspond to E′±.

D4: LetX = k[x, y, z]∕⟨x2 + zy2 + z3⟩ and let f = x be a rational function onX with the vanishing locus
C = {x = 0} ∩ X = {z(z +

√

−1y)(z −
√

−1y) = 0}, which we will keep track of to compute the
self-intersections of exceptional divisors.

Step 1 Let �0 ∶ X̃ → X be the blow-up at the origin with exceptional divisor E0.
(a). In the standard affine chart Spec k[x, y′, z′], the birational transform of X is given by

{1 + xz′(y′2 + z′2) = 0},

which is non-singular, and does not intersect the exceptional divisor as

{1 + xz′(y′2 + z′2) = 0, x = 0} = ∅.

We are not interested in this chart and in the sequel I will omit non-singular charts that do
note have useful information about exceptional divisors.
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(b). In the affine chart Spec k[x′, y, z′], the birational transform is given by

{x′2 + yz′(1 + z′2) = 0},

which has an A1 singularity at the origin as we can ignore the factor (1 + z′2) around the
origin (or more rigorously cf. Example 3.1.5), and the exceptional divisorE0 is given by the
z′-axis

{x′2 + yz′(1 + z′2) = 0} ∩ {y = 0} = {x′ = y = 0},
which in particular contains the A1 singularity. Here, the strict transform of C is given by

{z′(z′ +
√

−1)(z′ −
√

−1) = 0}

and f = x′y.
(c). Finally, in the affine chart Spec k[x′, y′, z], the birational transform is given by

{x′2 + z(y′2 + 1) = 0},

which has A1 singularities at (0,±
√

−1, 0), and the exceptional divisor E0 is given by the
y′-axis

{x′2 + z(y′2 + 1) = 0} ∩ {z = 0} = {x′ = 0, z = 0},
which in particular contain both of the A1 singularities. Here, the strict transform of C is
given by

{x = 0} ∩X = {(1 +
√

−1y′)(1 −
√

−1y′) = 0}
and f = x′z.

Step 2: Now, note that the three A1 singularities in Step 1 are all distinct since in Bl0A3 they are

([px ∶ py ∶ pz], (x, y, z)) = ([0 ∶ 1 ∶ 0], (0, 0, 0)), ([0 ∶ ±
√

−1 ∶ 1], (0, 0, 0))

and they all lie on the exceptional divisor E0 as we observed. Also, note that the strict transform
C0 of C intersect with E0 precisely at these point. Hence, considering the blow-ups �i at these
A1 singularities with exceptional divisors Ei (i = 1, 2, 3) (say �1 for ([0 ∶ 1 ∶ 0], (0, 0, 0)), �2 for
([0 ∶

√

−1 ∶ 1], (0, 0, 0)), and �3 for ([0 ∶ −
√

−1 ∶ 1], (0, 0, 0))), we obtain the following dual
graph:

where the central vertex corresponds to the initial exceptional divisor E0 and the other three
correspond to E1, E2, E3. Noting the symmetry given by x2 + zy2 + z3 = x2 + z(z+

√

−1y)(z−
√

−1y), to see the vanishing orders of f on Ei, it suffices to observe one of the blow-ups, say �1.
Write k[x′, y, z′] = k[x1, y1, z1] in Step 1 (b). Then, we have:

the strict transform X1: {x21 + y1z1(1 + z1
2) = 0}

the exceptional divisor E0: {x1 = 0, y1 = 0}
the rational function: f = x1y1.

Then, �1 ∶ X̃1 → X1 is the blow-up of X1 at the origin with exceptional divisor E1.
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(a). In the affine chart k[x1, y′1, z
′
1], the strict transform is given by

1 + y′1z
′
1(1 + z

′
1x1

2) = 0

and the exceptional divisor E1 is given by

{1 + y′1z
′
1 = 0, x1 = 0}.

Note this chart does not intersect with E0 since E0 = {x1 = 0, x1y′1 = 0} implies E0 = E1
in this chart, which is absurd. Here, f = x21y

′
1.

(b). In the affine chart k[x′1, y1, z
′
1], the strict transform is given by

x′1
2 + z′1(1 + (z

′
1y1)

2) = 0

and the exceptional divisor E1 is given by

{x′1
2 + z′1 = 0, y1 = 0}.

This chart does not intersect with E0 as above. Here, f = x′1y
2
1.

(c). In the affine chart k[x′1, y
′
1, z1], the strict transform is given by

{x′1
2 + y′1(1 + z

2
1) = 0}

and the exceptional divisor E1 is given by

{x′1
2 + y′1 = 0, z1 = 0}.

In this chart, the exceptional curve E0 is given by

{x′1 = 0, y
′
1 = 0}

and f = x′1y
′
1z
2
1.

Step 3: Now, by Step 2 (c), f = x′1y
′
1z
2
1(∼ x

′
1
3z21 ∈ (k[x

′
1, y

′
1, z1]∕⟨x

′
1
2 + y′1(1 + z

2
1)⟩)0) vanishes with

multiplicity 3 on E0 = {x′1 = y
′
1 = 0} and with multiplicity 2 on E1 = {x′1

2 + y′1 = 0, z1 = 0}.
Since f also vanishes with multiplicity 1 on the strict transform C̃ of the vanishing locus C ⊂ X
of f in X, we have

(f ′) = 3Ẽ0 + 2E1 + 2E2 + 2E3 + C̃,

where Ẽ0 is the strict transform of E0 under the three blow-ups and we have (Ẽ0 ⋅ C̃) = 0 and
(Ei ⋅ C̃) = 1 for i = 1, 2, 3 since the intersections of E0 and the strict transform C0 of C under �
are precisely blown up by �i. Therefore, since ((f ) ⋅ Ei) = 0 for every i, we are done.

E6: [Bur, §5.] Let X = Spec k[x, y, z]∕⟨x2 + y3 + z4⟩ and let f = x be a rational function on X.

Step 1: Let �0 ∶ X̃0 → X be the blow-up at the origin with exceptional divisor E0. In the affine chart
Spec k[x, y′, z′], the strict transform is given by

{1 + xy′3 + x2z′4 = 0},
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which is non-singular. In the affine chart Spec k[x′, y, z′], the strict transform is given by

{x′2 + y + y2z′4 = 0},

which is non-singular. In the affine chart, Spec k[x′, y′, z], the strict transform is given by

{x′2 + zy′3 + z2 = 0},

which has the only singularity at the origin, and the exceptional divisor is given by the y′-axis

{x′ = 0, z = 0}.

In this chart, f = x′z.
Step 2: Write k[x′, y′, z] = k[x1, y1, z1]. Then, we have:

the strict transform X1: {x21 + z1y
3
1 + z

2
1 = 0}

the exceptional divisor E0: {x1 = 0, z1 = 0}
the rational function: f = x1z1.

Let �1 ∶ X̃1 → X1 be the blow-up at the origin with exceptional divisorE1. Then, the only affine
chart with a singularity is Spec k[x′1, y1, z

′
1], where the strict transform is given by

{x′1
2 + y21z

′
1 + z

′
1
2 = 0},

which has the only singularity at the origin, and the exceptional divisor E1 is given by

{x′1
2 + z′1

2 = 0, y1 = 0} = {x′1 =
√

−1z′1, y1 = 0} ∪ {x
′
1 = −

√

−1z′1, y1 = 0}.

In this chart, E0 is given by
{x′1 = 0, z

′
1 = 0}

and f = x′1y
2
1z
′
1.

Step 3: Write k[x′1, y1, z
′
1] = k[x2, y2, z2]. Then, we have:

the strict transform X2: {x22 + y
2
2z2 + z

2
2 = 0}

the exceptional divisor E0: {x2 = 0, z2 = 0}

the exceptional divisor E1: {x22 + z
2
2 = 0, y2 = 0}

the rational function: f = x2y22z2.

Let �2 ∶ X̃2 → X2 be the blow-up at the origin with exceptional divisor E2.
(a). In the affine chart Spec k[x′2, y2, z

′
2], the strict transform is given by

{x′2
2 + y2z′2 + z

′
2
2 = 0},

which has an A1 singularity at the origin, and the exceptional divisor E2 is given by

{x′2
2+z′2

2 = 0, y2 = 0} = {z′2 =
√

−1x′2, y2 = 0}∪{z
′
2 = −

√

−1x′2, y2 = 0} = E2,+∪E2,−.
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In this chart, E0 is given by
{x′2 = 0, z

′
2 = 0}

and f = x′2y
4z′2. Note E1 does not intersect this affine chart since y2 = 0 implies E1 = E2

in this chart, which is absurd. To get information of E1, consider another chart.
(b). In the affine chart Spec k[x2, y′2, z

′
2], the strict transform is given by

{1 + x2y′2
2z′2 + z

′
2
2 = 0},

which is non-singular, and the exceptional divisor E2 is given by

{x2 = 0, 1 + z′2
2 = 0} = {x2 = 0, z′2 =

√

−1} ∪ {x2 = 0, z′2 = −
√

−1} = E2,+ ∪ E2,−.

In this affine chart, E1 is given by

{1 + z′22 = 0, y
′
2 = 0} = {y

′
2 = 0, z

′
2 =

√

−1} ∪ {y′2 = 0, z
′
2 = −

√

−1} = E1,+ ∪ E1,−.

Hence, all the intersections are transversal. Also, we have f = x42y
′
2
2z′2.

Step 4: Write k[x′2, y2, z
′
2] = k[x3, y3, z3]. Then, we have:

the strict transform X3: {x23 + y3z3 + z
2
3 = 0}

the exceptional divisor E0: {x3 = 0, z3 = 0}

the exceptional divisor E2: {x32 + z32 = 0, y3 = 0}

the rational function: f = x23y
4
3z3.

Let �3 ∶ X̃3 → X3 be the blow-up at the origin.
(a). In the affine chart Spec k[x3, y′3, z

′
3], the strict transform is given by

{1 + y′3z
′
3 + z

′
3
2 = 0}

and the exceptional divisor E3 is given by

{1 + y′3z
′
3 + z

′
3
2 = 0, x3 = 0}.

In this chart, E2 is given by

{1 + z′3
2 = 0, y′3 = 0} = {y

′
3 = 0, z

′
3 =

√

−1} ∪ {y′3 = 0, z
′
3 = −

√

−1} = E2,+ ⊔ E2,−.

Hence, E3, E2,± intersect transversely. Also, f = x63y3
4z3.

(b). In the affine chart Spec k[x′3, y3, z
′
3], the strict transform is given by

{x′3
2 + z′3 + z

′
3
2 = 0}

and the exceptional divisor E3 is given by

{x′3
2 + z′3 + z

′
3
2 = 0, y3 = 0}.

In this chart, E0 is given by
{x′3 = 0, z

′
3 = 0}.

Hence, E3 and E0 intersect transversely. Also, f = x′3y
6
3z
′
3.
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Step 5: Let � ∶ X̃ → X be the resolution of a singularity we constructed above. By abuse of notations,
Step 3 (b) and Step 4 give the following charts of X̃:

the strict transform X3,b: {1 + xy2z + z2 = 0}

the exceptional divisor E2: {x = 0, z =
√

−1} ∪ {x = 0, z = −
√

−1} = E2,+ ∪ E2,−

the exceptional divisor E1: {y = 0, z =
√

−1} ∪ {y = 0, z = −
√

−1} = E1,+ ∪ E1,−
the rational function: f = x4y2z.

the strict transform X4,a: {1 + yz + z2 = 0}

the exceptional divisor E3: {1 + yz + z2 = 0, x = 0}

the exceptional divisor E2: {y = 0, z =
√

−1} ∪ {y = 0, z = −
√

−1} = E2,+ ∪ E2,−.

the rational function: f = x6y4z.

the strict transform X4,b: {x2 + z + z2 = 0}

the exceptional divisor E3: {x2 + z + z2 = 0, y = 0}
the exceptional divisor E0: {x = 0, z = 0}.

the rational function: f = xy6z.

Hence, although we have skipped some proofs of disjointness of exceptional divisors (which can
be done just by checking in all the charts as in the An case), we obtain the following dual graph:

where the central vertex corresponds toE3, the upper vertex toE0, the outer vertices toE1,±, and
the rest to E2,±. Now, it suffices to compute the self-intersections of these exceptional curves.
Hence, we compute the principal divisor (f◦�) on X̃. First, in the chart X3,b, f◦� = x4y2z and
hence f◦� vanishes with multiplicity 4 on {x = 0} = E2 and with multiplicity 2 on {y = 0} =
E1. Note z = 0 cannot happen. Next, in the chart X4,a, f◦� = x6y4z vanishes with multiplicity
6 on {x = 0} = E3 and with multiplicity 4 on {y = 0} = E2. Note z = 0 cannot happen. Finally,
in the chartX4,b, f◦� = xy6z(∼ x3y6 ∈ (k[x, y, z]∕ ̄x2 + z + z2)0) and hence f◦� vanishes with
multiplicity 3 on {x = z = 0} = E0, with multiplicity 6 on {y = 0} = E3, with multiplicity 1 on
{x = 0, z = −1} = C , where C is the strict transform of the vanishing locus {z = 0} ⊂ X of f
in X. In summary, we have

(f◦�) = 3E0 + 2(E1,+ + E1,−) + 4(E2,+ + E2,−) + 6E3 + C.

Hence, noting ((f◦�) ⋅ E∙) = 0 for all ∙, (C ⋅ E3) = 1, and (C ⋅ Ei) = 0 for all ∙ ≠ 3, we can
compute all the self-intersections and get (E∙ ⋅ E∙) = −2 for all ∙ as desired.

▭
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Remark 3.4.4. As we might expect from the case of A1 (Example 3.3.4), Du Val singularities can be also
expressed as quotient singularities. Indeed, we have the following classification of finite subgroups of SL2(ℂ)
up to conjugation, each of which corresponds to one of Du Val singularities [Bur, §2,§3]:

(i) Cyclic groups �n correspond to An−1.

(ii) Binary dihedral groups Dn (|Dn| = 4n) correspond to Dn+2.

(iii) The binary tetrahedral group T (|T | = 24) corresponds to E6.

(iv) The binary octahedral group O (|O| = 48) corresponds to E7.

(v) The binary icosahedral subgroup I (|I| = 120) corresponds to E8.

One fascinating fact about this correspondence is that we can recover the dual graph of the minimal resolution
as the McKay graph of the corresponding group, which can be computed in terms of representation theory
(cf. [Bur, §6]). Also, we have the following classification of surface singularity that extends the preceding
correspondence:

Lemma 3.4.4.1. [Kol95, Theorem 3.6.] Let (0 ∈ X) be a germ of a normal surface singularity over
ℂ. Then, the germ (0 ∈ X) is:

terminal ⟺ smooth;
canonical ⟺ ℂ2∕(finite subgroup of SL2(ℂ));

log terminal ⟺ ℂ2∕(finite subgroup of GL2(ℂ));
log canonical ⟺ simple elliptic, cusp, smooth, or a quotient of these by a finite group.

◾

▬



Chapter 4

Resolution of cDV singularity

In this chapter, we set k = ℂ unless otherwise specified.

4.1 Weighted projective spaces and weighted blow-ups
First, I introduce a useful tool for resolving cDV singularities and singularities in general.

Definition 4.1.1. Let (a0,… , an) ∈ ℤn+1>0 . The weighted projective space ℙ(a0,… , an) with weight
(a0,… , an) is the quotient (An+1 ⧵ {0})∕k∗ of An+1, where � ∈ k∗ acts by

� ⋅ (x0,… , xn) = (�a0x0,… , �anxn).

We can make this construction scheme-theoretic by writing An+1k ⧵ {0} =
⋃n
i=0 Spec k[x0,… , xn]xi and

gluing the affine quotients Spec k[x0,… , xn]xi∕Gm (cf. Definition B.2.7). We also have

ℙ(a0,… , an) = Proj k[x0,… , xn],

where we assign deg(xi) = ai for i = 0,… , n. ▬

Example 4.1.2. If (a0,… , an) = (1,… , 1), then we clearly have the usual ℙ(a0,… , an) = ℙn. ▬

Lemma 4.1.3. [Hos20, Lemma 2.2.3.] Let (a0,… , an) ∈ ℤn+1>0 and let �ai = ⟨g⟩ denote the cyclic group of
order ai. An action � of �ai on A

n is said to be of type 1
ai
(a0,… , âi,… , an) if

�(g)(x0,… x̂i,… , xn) = (ga0x0,… , ĝaixi… , ganxn).

Now, if we write Ui = {[x0 ∶⋯ ∶ xn] ∈ ℙ(a0,… , an) ∣ xi ≠ 0}, then we have

Ui ≅ An∕�ai ,

where the action of �ai on An is of type 1
ai
(a0,… , âi,… , an). ▬

44
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Definition 4.1.4. Fix w1,… , wn ∈ ℤ>0. Let R ∶= k[x1,… , xn]. For a monomial in R, set w(
∏

xmii ) =
∑

miwi. More generally, for f ∈ R set w(f ) = minaM≠0w(M) where we write f =
∑

M aMM as the sum
of monomials M . (Note that w(0) = ∞.) We obtain ideals mw(n) = {f ∈ R|w(f ) ≥ n}. The weighted
blow-up of Ank with weights wi (or the w-blow-up of Ank) is defined as

Blw0 Ak ∶= ProjR⊕n≥0m
w(n).

For anyX ⊂ An this defines Blw0 X as the birational transform ofX in Blw0 Ank, i.e. the closure ofX ⧵ {0} in
Blw0 Ank. ▬

Remark 4.1.5. Note that this is a generalization of the blow-up of Ank at the origin. Recall that the Proj
construction of the blow up at the origin is given as follows. Let R = k[x1,… , xn] and I = ⟨x1,… , xn⟩.
Then, the blow-up of Ank = SpecR at {0} = I is given by

Bl0Ank = ProjR⊕n≥0I
n,

where we set I0 = R. Indeed, if w = (1,… , 1), then we have w(f ) = minaM≠0 deg(M) and mw(n) = In.
Now, note we have a natural surjective homomorphism

R[T1,… , Tn]↠ ⊕n≥0I
n, Ti ↦ xi

of graded rings with kernel given by the homogeneous ideal I ∶= ⟨xjTi − xiTj⟩i,j . Hence, we have

Bl0An = ProjR[T1,… , Tn]∕⟨xjTi − xiTj⟩i,j ⊂ ℙn−1R = ℙn−1k ×k Ank,

which recovers a classical definition by using coordinates. ▬

Remark 4.1.6. Note that although the usual blow-up of R ≅ k[X1,… , Xn] along an ideal does not depend
on the choice of isomorphisms R ≅ k[X1,… , Xn], weighted blow-ups depend on a specific choice of inde-
terminates with weights. ▬

Keeping the preceding remark in mind, I give another characterization of the weighted blow-up Blw0 Ank
by using coordinates.

Construction 4.1.7. We use the same notations as in Definition 4.1.4. First, let R = k[x1,… , xn] and
consider a weighted polynomial ring R[T1,… , Tn]w with deg Ti = wi. Then, we have a surjective homo-
morphism he surjective homomorphism

� ∶ R[T1,… , Tn]→ ⊕n≥0m
w(n), Ti ↦ xi

of graded rings. Then, we clearly have

Iw ∶= ⟨T
wj
i xwij − Twij x

wj
i ⟩i,j ⊂ Ker �.

▬

In analogy with the usual blow-up, we have the following:

Lemma 4.1.8. Suppose k is an algebraically closed field of characteristic 0. Then, with the notations in
Construction 4.1.7, the natural morphism

F ∶ Blw0 Ank ≅ ProjR[T1,… , Tn]∕Ker �→ ProjR[T1,… , Tn]∕Iw

is an isomorphism. ▬
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Proof. To begin with, let us get familiar with the target variety:

V ∶= ProjR[T1,… , Tn]∕Iw ⊂ ProjR[T1,… , Tn] = ℙk(w1,… , wn) ×k Spec k[x1,… , xn].

Lemma 4.1.8.1. Under the closed immersion above, V can be locally described as follows: we have
an isomorphism

V ∩ ({Ti ≠ 0} ×k Spec k[x1,… , xn]) ≅ Spec k[x′1,… , x′n]∕
1
w1
(0, w2,… , wn),

which gives the following relations:

xi = x′i
wi , xj = x′jx

′
i
wj for all j ≠ i.

◾

Proof. For brevity, suppose i = 1. Then, by Lemma 4.1.3, we have

V ∩ ({T1 ≠ 0} × Spec k[x1,… , xn])

≅ {(T2,… , Tn), (x1,… , xn)) ∈ An−1 ×An ∣ ∀i, j ∶ Twji xwij = Twij x
wj
i , T1 = 1}∕

1
w1
(w2,… , wn)

= {(T2,… , Tn), (x1,… , xn)) ∈ An−1 ×An ∣ ∀i ∶ xw1i = Tw1i xwi1 }∕
1
w1
(w2,… , wn)

≅ {(T2,… , Tn), (x1,… , xn)) ∈ An−1 ×An ∣ ∀i ∶ xi = Tix
wi∕wj
1 }∕ 1

w1
(w2,… , wn)

≅ Spec k[x′1,… , x′n]∕
1
w1
(0, w2,… , wn),

where each �w1 -action is the obvious one and the last isomorphism is given by

x1 = x′1
w1 , ∀i ≥ 2 ∶ x′i = Ti.

◽

Now, by LemmaB.2.10, the preceding lemma in particular shows thatV is normal. Also, since⊕n≥0mw(n)
is an integral domain and hence Ker � is a prime ideal, Blw0 Ank is integral (in particular irreducible). Hence,
it suffices to show that F induces a bijection on closed points by the following claim:

Lemma 4.1.8.2. Let X and Y be varieties over an algebraically closed field k of characteristic 0.
SupposeX is irreducible and Y is normal. If a morphism f ∶ X → Y induces a bijection on closed
points, then it is an isomorphism. ◾

Proof. The idea of a proof is due to a mathoverflow answer ([Ele]) by Georges Elencwajg. Since
the claim is local on the target, we may assume Y is integral by normality. Now, I claim f is a
quasi-finite morphism, which is equivalent to showing that f has finite fibers by [Sta21, Tag 02NH]
since f is of finite type. Indeed, since the fiber f−1(x) of any closed point x ∈ Y consists of a single
(closed) point ofX, we see that f has finite fibers by [GW10, Remark 12.16], which essentially says
that since the set S of points in Y with finite fibers is a constructible set and contains the set of closed
points, we have S = Y , where we also use the fact that k is algebraically closed in a crucial way.
Now, note the following claim in a mathoverflow answer. (In the proof, we may skip the reduction to
a finite morphism since a quasi-finite projective morphism is finite (e.g. [Liu02, Corollary 4.4.8.])):

https://mathoverflow.net/q/73325
https://stacks.math.columbia.edu/tag/02NH
https://math.stackexchange.com/q/350503
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Lemma 4.1.8.3. [use] (cf.[Liu02, Exercise 6.2.9.]) Let f ∶ X → Y be a dominant mor-
phism of integral algebraic varieties over an algebraically closed field. Suppose the field
extensionK(X)∕K(Y ) of function fields is finite separable and [K(X) ∶ K(Y )] = n. Then,
there exists a dense open subset of U of Y such that f−1(y) consists of n points for all
y ∈ Y . ◾

Since f is bijective on closed points, f is dominant. Hence, noting that k is of characteristic 0,
i.e. K(X)∕K(Y ) is separable, we see that the degree [K(X) ∶ K(Y )] is 1 and hence f is birational.
Then, note the following variant of Zariski’s main theorem:
Lemma 4.1.8.4 (Zariski’s Main Theorem). [Liu02, Corollary 4.4.6.] Let X be an irre-
ducible scheme and Y a normal, locally noetherian, integral scheme. Let f ∶ X → Y be
a separated birational morphism of finite type. If f is moreover quasi-finite, then f is an
open immersion. ◾

Since we suppose and have shown all the conditions, f is an open immersion. Now, since f is
surjective on closed points, f is surjective by Chevalley’s theorem ([Vak17, 7.4.2,7.4.E.]), which
suffices for a proof. ◽

Now, first since Iw ⊂ Ker �, we see that F is a closed immersion F ∶ Blw0 Ank ↪ V and is in particular
injective on closed points. Hence, it suffices to see F is surjective on closed points. Consider the following
chart of ℙk(w1,… , wn) ×k Ank:

U1 ∶= (ℙk(w1,… , wn) ×k Ank) ∩ ({T1 ≠ 0} ×k A
n
k)

≅ {((T2,… , Tn), (x1,… , xn)) ∈ An−1 ×An}∕ 1
w1
(w2,… , wn)

and assume there exists a closed point P ∈ V ∩ U1 that is not lying in Blw0 Ank for the sake of contradiction.
Then, since Blw0 Ank is a closed subscheme of V , there exists a polynomial f ∈ Ker � ⊂ R[T1,… , Tn] such
that f isw-weighted homogeneous and f |U1 cuts out a closed subset of V ∩U1 that contain Bl

w
0 An∩U1, but

does not contain P . Then, by the equations xw1i = Tw1i xwi1 on V ∩ U1 given in the proof of Lemma 4.1.8.1,
we can write the equation f |U1 = 0 purely in terms of xi’s on V ∩ U1 ∩ {x1 ≠ 0}. Note in general that by
writing a w-homogeneous equation E of Tj’s and xi’s on V ∩ U1 purely in terms of xi’s, we see that if E
becomes trivial in⊕n≥0mw(n) via Tk ↦ xk, then E is trivialized by the relations xw1i = Tw1i xwi1 on V ∩ U1.

Example 4.1.8.5. Note the w-homogeneous equation E

T
wjwk
i xwkwij x

wiwj
k + x

wjwk
i Twkwij x

wiwj
k − 2x

wjwk
i xwkwij T

wiwj
k = 0

gets mapped to a trivial equation by Ti ↦ xi, but E is trivial from the beginning by relations
xw1i = Tw1i xwi1 . This must be true in general since if we use Ti =

xi
xwi∕w11

, then the denominator

of each monomial is the same multiple of x1 (as E isw-homogeneous) and hence we can take them
away, which gives us exactly the image of the map Ti ↦ xi. ◾

Hence, since f cuts out a proper subset of V ∩ U1, f gives a non-trivial relation of xi’s in ⊕n≥0mw(n),
which is absurd since f ∈ Ker � and R[T1,… , Tn]∕Ker � ≅ ⊕n≥0mw(n). ▭

In the sequel, we may use Lemma 4.1.8.1 as a local parameter of the weighted blow-up.
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4.2 Resolution of cDV singularity
Definition 4.2.1. A germ (x ∈ X) of 3-fold singularity is called a compound Du Val (cDV) singularity if it
is formally isomorphic to the germ (0 ∈ {F = 0}) for

F (x, y, z, t) = f (x, y, z) + tg(x, y, z, t),

where f is the equation of a Du Val singularity (Theorem 3.4.1) and g is an arbitrary polynomial, or equiva-
lently a 3-fold singularity in A3 for which there exists a hyperplane H ⊂ A3k such that (x ∈ H) is a Du Val
singularity. ▬

As we expect, cDV singularities give a nice class of 3-fold singularities.

Theorem 4.2.2. [Mil83, Theorem 1.1.] Let (p ∈ X) be a germ of a point in 3-fold. Then, (p ∈ X) is an
isolated cDV singularity if and only if p ∈ X is a terminal of index 1, i.e. KX is principal around p (cf.
[Mil83, 0.12.(e)]). ▬

Now, we consider a resolution of an isolated cE7 singularity to see it is indeed terminal.

Lemma 4.2.3. [Kol08, Example 49] Let X be the cE7-type singularity given by f (x, y, z, t) = x2 + y3 +
yg3(z, t) + ℎ5(z, t) in A4, where g3 (resp. ℎ5) is homogeneous of degree 3 (resp. 5) and they do not have a
common factor. Then, X has the only singularity at the origin and the singularity is terminal. ▬

Proof. First, to see X has the only one singularity at the origin, note that we have

)xf = 2x, )yf = 3y2 + g3(z, t), )zf = y)zg3 + )zℎ5, )tf = y)tg3 + )tℎ5.

Hence, if (x0, y0, z0, t0) is a singularity, then x0 = 0. Therefore, we have

f (0, y0, z0, t0) = y30 + y0g3(z0, t0) + ℎ5(z0, t0) = 0,

3y20 + g3(z0, t0) = 0,
y0)zg3(z0, t0) + )zℎ5(z0, t0) = 0,
y0)tg3(z0, t0) + )tℎ5(z0, t0) = 0.

First, by the first and the second equations, we have ℎ5(z0, t0) = −2y30. Also, by the third and the fourth
equations together with Euler’s homogeneous function formula, we have 3y0g3(z0, t0) + 5ℎ5(z0, t0) = 0,
which, combined with the second equation, yields ℎ5(z0, t0) =

9
5y
3
0. Hence, we have −2y30 =

9
5y
3
0, i.e.

y0 = 0. Therefore, we have g3(z0, t0) = 0 and ℎ5(z0, t0) = 0. Since g3 and ℎ5 do not have a common factor,
we have z0 = t0 = 0 as desired.

Now, to see that the singularity is terminal, consider the (3, 2, 1, 1)-blow up Y → X with exceptional
divisor E. Write w = (3, 2, 1, 1). Now, we consider the strict transforms of X in the 4 standard charts of
Blw0 A4 by Lemma 4.1.8.1.

Chart Ut: First, consider the chart Ut = Spec k[x′, y′, z′, t] given by x = x′t3, y = y′t2, z = z′t, t = t.
Then, since

f (x′t3, y′t2, z′t, t) = t5(tx′2 + ty′3 + y′g3(z′, 1) + ℎ5(z′, 1)),

Y ∩ Ut is given by

{ft(x′, y′, z′, t) ∶= tx′
2 + ty′3 + y′g3(z′, 1) + ℎ5(z′, 1) = 0} ⊂ Ut.
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Then, the exceptional divisor is given by

{ft(x′, y′, z′, t) = 0, t = 0} ⊂ Ut.

Now, we compute the discrepancy a(X,E) with respect to � ∶ Y → X. As before, we have the
following canonical 3-form on X:

s = ResA4|X
dx ∧ dy ∧ dz ∧ dt

f
=
dy ∧ dz ∧ dt

)xf
=
dy ∧ dz ∧ dt

2x
.

Then, we have

�∗s|Ut =
t3dy′ ∧ dz′ ∧ dt

2x′t3
= t

dy′ ∧ dz′ ∧ dt
)xft

= t ⋅ ResUt|Y ∩Ut
dx ∧ dy ∧ dz ∧ dt

ft

and hence we see the discrepancy a(E,X) of E with respect to X is given by

a(E,X) = 1.

In particular, to see X has a terminal singularity, it suffices to show that Y has a terminal singularity.
To begin with, note

)x′ft = 2tx′, )y′ft = 3y′
2 + g3(z′, 1), )z′ft = y′dz′g3(z′, 1) + dz′ℎ5(z′, 1), )tft = x′

2 + y′3.

If x′ = 0, then y′ = 0. Hence, g3(z′, 1) = ℎ5(z′, 1) = 0, which is absurd since g3 and ℎ5 do not have a
common factor. In particular, there is no singularity with x′ = y′ = z′ = 0. The case when t = 0 (i.e.
a point lying in E) will be examined in the charts Uy and Ux.

Chart Uz: Next, consider the chart Uz = Spec k[x′, y′, z, t′]. Since the polynomial f and the weight
(3, 2, 1, 1) are symmetric with respect to z and t, the only points we concern are points with z = 0
(lying in E), which will be examined in the charts Uy and Ux.

Chart Uy: Now, consider the chart Uy = Spec k[x′, y′, z′, t′]∕ 12 (1, 0, 1, 1) given by the substitutions
x = x′y′3, y = y′2, z = z′y′, t = t′y′. Then, Y ∩ Uy is given by

{f ′y(x
′, y′, z′, t′) ∶= (x′2 + 1)y′ + g3(z′, t′) + ℎ5(z′, t′) = 0}∕

1
2
(1, 0, 1, 1) ⊂ A4x′,y′,z′,t′∕

1
2
(1, 0, 1, 1).

(cA2). First, we consider singularities that are not the vertex of the quotient. First, consider Ũy =
{f ′y = 0} ⊂ A4. Then, note

)x′f
′
y = 2x

′y′, )y′f
′
y = x

′2 + 1, )z′fy = )z′g3 + )z′ℎ5, )t′f
′
y = )t′g3 + )t′ℎ5.

Hence, by the same argument using Euler’s homogeneous function formula as in the first part, we
see that the only singularities are (x′, y′, z′, t′) = (±

√

−1, 0, 0, 0) (lying in L), which are clearly
cA2 singularities. Since Ũy is a �2-subvariety and the quotient is étale outside of the origin, these
singularities remain to be cA2 singularities of the form

0 ∈ {x′y′ + g3(z′, t′) + ℎ5(z′, t′) = 0}
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after the quotient and they indeed become the same point. Since the singularity is isolated by
the same argument as above, we know that it is terminal by Theorem 4.2.2. To actually get a
resolution, we first take the (1, 2, 1, 1)-blow up at the origin (cf. [Che13, Theorem 3.2.] for the
reason of this specific choice). Then, it is easy to see that the charts corresponding to x′ and y′
are non-singular and the charts corresponding to z′ and t′ have cA1 singularities. For example,
in the affine chart Ut′ corresponding to t′, i.e. the chart given by substitutions x′ = x′′t′, y′ =
y′′t′2, z′ = z′′t′, t′ = t′, the strict transform is given by

{x′′y′′ + g3(z′′, 1) + t′
2g5(z′′, 1) = 0} ⊂ Ut′ .

It is also straightforward to check that the discrepancy with respect to this weighted blow-up is
positive as above. Now, since we may assume the singularity is given by

0 ∈ {x′′y′′ + t′2 + z′′3 = 0},

we immediately see the usual blow-up resolves the singularity.
(Vertex). Now, it suffices to see that the vertex of the quotient is terminal. From now on, I will write

x′ = x0, y′ = x1, z′ = x2, t′ = x3. Then, note a basis of (Ω3Ũy
)⊗2 can be given by

(

ResA4|Ũy
dx0 ∧ dx1 ∧ dx2 ∧ dx3

f ′y
2

)⊗2

=
(dx0 ∧ dx2 ∧ dx3)⊗2

(x20 + 1)
2

.

Hence, noting that the �2-action acts on these three coordinates as 12 (1, 1, 1) and trivially on the
other, we can see that the blow-up at the vertex has positive discrepancy by the similar argument
as in Example 3.3.5 with Ũy in the place of A3. Since Ũy is non-singular at the origin and hence
the vertex can be viewed as the vertex of the affine cone over a non-singular projective variety
via the Veronese embedding, the blow-up resolves the singularity (Lemma 3.2.3) and hence the
singularity is terminal.

Chart Ux: Now, consider the chart Ux = Spec k[x′, y′, z′, t′]∕ 13 (0, 2, 1, 1) given by the substitutions
x = x′y′3, y = y′2, z = z′y′, t = t′y′. Then, Y ∩ Ux is given by

{f ′x(x
′, y′, z′, t′) = x′(1 + y′3) + y′g3(z′, t′) + ℎ5(z′, t′) = 0}∕

1
3
(0, 2, 1, 1).

By the same arguments as above we have one cA2 singularity in E and outside of the vertex, which
should be resolved and shown to be terminal as above, noting that this is an isolated cDV singularity
and hence must be terminal by Theorem 4.2.2 although a resolution should be trickier since we have
y′g3(z′, t′) instead of g3(z′, t′) (in particular, we are expected to consider the (1, 3, 1, 1)-blow-up again
by [Che13, Theorem 3.2.]). Finally, the singularity at the vertex should be resolved as in the case of
A3∕ 13 (2, 1, 1). Although I did not present a resolution of this specific quotient singularity, it should be

resolved as in the case of A3∕ 12 (1, 1, 1), where we are expected to consider
(

Ω3
A3∕ 13 (2,1,1)

)⊗3
instead

of
(

Ω3
A3∕ 13 (2,1,1)

)⊗2
. Since we know that the singularity at the vertex of A3∕ 13 (2, 1, 1) is terminal by

Reid-Tai criterion (Lemma 3.3.3.1), these computations must suffice for a proof.
▭



Appendix A

Divisors

A.1 Relations among several notions
Although we will focus on the case of normal varieties in this thesis, I will give more general settings to
observe subtlety regrading normality.

Notation A.1.1. In this section, let (∗) denote the following condition for a scheme X:

(∗) X is a noetherian integral separated scheme which is regular in codimension one.

In particular, a normal variety satisfies (∗). ▬

Definition A.1.2. Suppose that a scheme X satisfies (∗).

(i) A prime divisor is a closed integral subscheme of codimension 1.

(ii) A Weil divisor is a formal linear combination of prime divisors over ℤ. Let Div(X) denote the
abelian group of Weil divisors.

(iii) An effective Weil divisor is a Weil divisorD whose coefficients of each generator is non-negative.
We write D ≥ 0.

(iv) A principal Weil divisor is a Weil divisor defined by

(f ) ∶=
∑

[Z]∶prime divisor
vZ (f )[Z],

where f is a non-zero rational function onX and vZ is the discrete valuation ofX,� with � the generic
point of Z. Let Princ(X) ⊂ Div(X) denote the subgroup of principal Weil divisors.

(v) A linear equivalence ∼ on Div(X) is defined so that D1 ∼ D2 iff D1 −D2 ∈ Princ(X).

(vi) A Weil divisor class group is the quotient Cl(X) ∶= Div(X)∕ Princ(X).

(vii) The support SuppD of D ∈ DivX is the union of prime divisors that appear in the summation.

▬

51
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The following are useful for computation.

Lemma A.1.3. [Har77, Proposition II.6.5.] Let X be a scheme that satisfies (∗), Z a proper closed subset
of X, and U = X ⧵Z.

(i) There is a surjection DivX ↠ DivU defined by
∑

niYi ↦
∑

ni(Yi ∩ U ), where we ignore those
(Yi ∩ U ) which are empty, which also induces a surjection ClX ↠ ClU .

(ii) If codimX Z ≥ 2, then the surjections DivX ↠ DivU and ClX ↠ ClU are isomorphisms.

(iii) If Z is an irreducible subset of codimension 1, then there are exact sequences:

0 // ℤ 1↦[Z] // DivX // DivU // 0

ℤ 1↦[Z] // ClX // ClU // 0

Proof.

(i) The only nontrivial claim is the well-definedness ofClX → ClU . Indeed, if f is a non-zero rational
function on X with (f ) =

∑

niYi, then (f |U ) =
∑

ni(Yi ∩ U ).

(ii) The groups DivX and ClX only depend on subsets of codimension 1. The inverse is given by
taking the closure of each prime divisor.

(iii) The kernel of DivX → DivU consists of divisors whose support is inZ. SinceZ irreducible, we
obtain the desired exact sequences.

▬

▬

Corollary A.1.4. [Har77, II.Ex.8.5(a)] LetX be a nonsingular variety, Y a non-singular subvariety of codi-
mension r ≥ 2, � ∶ X̃ → X the blow-up of X along Y , and Y ′ = �−1(Y ) (cf. [Har67, Definition in p.163
and Proposition II.7.13.(a)]). Then, we have the spilt short exact sequence:

0 // ℤ 1↦[Y ′] // Pic X̃ �∗ // PicX // 0,

where �∗ is given by the composition Pic X̃ → Pic(X̃ ⧵ Y ′) ≅ Pic(X ⧵ Y ) ≅ PicX and the pull-back
�∗ ∶ PicX → Pic X̃ gives a section. In particular, Pic X̃ ≅ PicX ⊕ ℤ. ▬

Proof. By Lemma A.1.3 and Corollary A.1.17, it suffices to show that ℤ → Pic X̃ is injective. Indeed, by
[Har77, Theorem II.8.24.], we have X̃(−nY ′) ≅ Y ′ (−n) and hence n[Y ′] = [nY ′] = 0 implies n = 0. ▭

Remark A.1.5. IfX is a non-singular surface and Y is a point onX above, then the injectivity of ℤ → Pic X̃
simply follows by (nY ′ ⋅ nY ′) = −n2. ▬

Lemma A.1.6. [Har77, II.6.2.] Let R be a noetherian domain. Then, A is a unique factorization domain if
and only if X = SpecR is normal and Cl(X) = 0. In particular, Cl(Ank) = 0. ▬

We now define Cartier divisors, which are generalization of Weil divisors to arbitrary schemes.
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Definition A.1.7. Let X be a scheme.

(i) The sheaf X of stalks of meromorphic functions on X (or the sheaf of total quotient rings
on X) is defined as follows: first, for each open subset U of X, let X(U ) = {a ∈ X(U ) ∣ ax ∈
R(X,x) for all x ∈ U}, where R(X,x) denotes the multiplicative group of the regular elements (i.e.
non-zero divisors) of X,x, which clearly defines a sheaf  on X.
Lemma A.1.7.1. [Liu02, Lemma 7.1.12.] There exists a unique presheaf of algebras ′

X on
X containing X with the following properties:

(a) For any open subsetU ofX, we have′
X(U ) = X(U )−1X(U ). In particular,′

X(U )
is the total ring of fraction of X(U ), denoted by Frac(X(U )), if U is affine.

(b) For any open subset U of X, the canonical homomorphism ′
X(U ) →

∏

x∈U ′
X,x is

injective.
(c) If X is locally noetherian, then for any x ∈ X, ′

X,x ≅ Frac(X,x).

◾

Then, we define the sheaf X to be the sheafification of ′
X .

(ii) A Cartier divisor is a global section of the quotient sheaf ∗∕∗, which can be represented by
{(Ui, fi)} where {Ui} is an open covering of X, fi is the quotient of two regular elements of (Ui),
and fi|Ui∩Uj ∈ fj|Ui∩Uj(Ui ∩ Uj)

∗. Write

CaDiv(X) ∶= H0(X,∗∕∗).

We consider the multiplicative group structure, but the group operation is denoted additively.

(iii) An effective Cartier divisor is an element D of the image of the canonical map

H0(X, (∗ ∩ )∕∗)→ H0(X,∗∕∗).

In particular, it can be represented by {(Ui, fi)} with fi ∈ ∗(Ui) ∩(Ui) for each i. We writeD ≥ 0.
See also Remark A.1.14.

(iv) A principal Cartier divisor is an element of the image

CaPrinc(X) ∶= Im(H0(X,∗)→ H0(X,∗∕∗)).

In particular, it can be represented by {(Ui, fi)} such that fi|Ui∩Uj = fj|Ui∩Uj for any i, j.

(v) A linear equivalence ∼ on CaDiv(X) is defined so that D1 ∼ D2 iff D1 −D2 ∈ CaPrinc(X).

(vi) A Cartier divisor class group is the quotient CaCl(X) = CaDiv(X)∕ CaPrinc(X).

▬

Now, we compare Weil divisors with Cartier divisors. For sufficiently good schemes, they are the same.
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Construction A.1.8. [Har77, Proposition 6.11] Suppose X satisfies (∗). Then, we have the natural map

Φ ∶ CaDiv(X)→ Div(X)

defined as follows. Take a Cartier divisor {(Ui, fi)} ∈ CaDiv(X). Then, note that for a prime divisor
[Z] ∈ Div(X) and any Ui, Uj that intersect Z, we have

vZ (fi) = vZ (fj)

since fi∕fj is invertible on Ui ∩ Uj , i.e., vZ (fi∕fj) = 0. Hence, by fixing Ui ∩ Z ≠ ∅, if exists, for each
prime divisor [Z] we have a well-defined Weil divisor

Φ({(Ui, fi)}) =
∑

vZ (fi)[Z] ∈ Div(X)

where the sum is finite sinceX is noetherian. In particular, Φ is a group homomorphism and sends effective
Cartier divisors to effective Weil divisors. ▬

Remark A.1.9. We say a Weil divisor D is locally principal if X can be covered by open sets U such that
D|U = D ∩ U ⊂ U is a principal Weil divisor for each U . Therefore, by construction, the natural map Φ
maps Cartier divisors to locally principal Weil divisors. ▬

Lemma A.1.10. [Liu02, Proposition 7.2.14] Suppose X satisfies (∗) and is moreover normal.

(i) The natural map Φ in Construction A.1.8 induces an isomorphism

CaPrinc(X)
∼
→ Princ(X).

(ii) The natural map Φ is injective and induces the injective homomorphism

CaCl(X)↪ Cl(X).

Moreover, {(Ui, fi)} is effective iff Φ({(Ui, fi)}) is effective.

(iii) In particular, the natural map Φ induces an isomorphism

CaDiv(X)
∼
→ Im(Φ) = {the group of locally pricincipal Weil divisors}.

(iv) Suppose X is moreover locally factorial, i.e., all of whose local rings are unique factorization
domains (in particular normal domains). Then, the natural map Φ induces isomorphisms

CaDiv(X)
∼
→ Div(X), CaCl(X)

∼
→ Cl(X).

▬

Remark A.1.11. In the proof, we first show that Φ induces a surjective homomorphism CaPrinc(X) ↠
Princ(X) and then show Φ is injective, which implies the isomorphism of the principal divisor groups and
hence part (iii). ▬

Remark A.1.12.



A.1. RELATIONS AMONG SEVERAL NOTIONS 55

(i) We need the normality of X for the injectivity of Φ. In other words, if X is not normal, then there
can be a non-zero principal Cartier divisor that gets mapped to 0 in Div(X).
Example A.1.12.1. [Liu02, Example 7.2.15] Let X = Spec k[s, t]∕⟨s2 − t3⟩ be an integral
curve and let p = ⟨t, s⟩ ∈ X. Then, we have

lengthX,p (X,p∕⟨t⟩) = lengthX,p (X,p∕⟨t − s⟩) = 2.

Hence, for a principal Cartier divisorD defined by f ∶= (t−s)∕t ∈ K(X)∗, we haveΦ(D) = 0
since fx ∈ ∗X,x, i.e., vx(f ) = 0 for all points x ≠ p and in particular for all closed points
(i.e., closed subschemes of codimension 1). On the other hands, D ≠ 0 since fp ∉ X,p. ◾

(ii) We need the local factoriality of X for the isomorphicity of Φ. See Lemma 1.4.1.

▬

Finally, we will see the relation between Cartier divisors and line bundles.

Construction A.1.13. Let X be a scheme. We construct a map CaDiv(X) → Lin(X) as follows. Take a
Cartier divisor D = {(Ui, fi)} ∈ CaDiv(X). Then, define a subsheaf X(D) ⊂ X by

X(D)|Ui ∶= f
−1
i X|Ui ,

which is well-defined since fi∕fj is invertible on Ui ∩ Uj and hence f−1i X|Ui∩Uj ≅ f−1j X|Ui∩Uj and
clearly does not depend on the choice of the representation {(Ui, fi)}. Noting that

Ui → X(D)|Ui ; 1↦ f−1i
is an isomorphism, we have obtained a map

CaDiv(X)→ Lin(X); D ↦ X(D).

▬

Remark A.1.14. Note that D is an effective Cartier divisor iff X(−D) is a subsheaf of X . Since X(−D)
is locally generated by the non-zero divisors fi by construction, the ideal sheaf X(−D) corresponds to the
closed subscheme of X locally cut out by the non-zero divisors fi. Therefore, an effective Cartier divisor
corresponds to a closed subscheme of codimension 1 whose ideal sheaf is invertible. Here, we used Krull’s
principal ideal theorem to compute the codimension:

Theorem A.1.14.1 (Krull’s Principal Ideal Theorem). [Vak17, 11.3.3.] Let A be a noetherian ring
and f ∈ A. Then, every prime p minimal among containing f has codimension at most 1. If f
is furthermore not a zero divisor, then every such prime p containing f has codimension precisely
1. ◾

▬

Remark A.1.15. If X satisfies (∗) and is locally factorial, then we obtain a homomorphism

Div(X) ≅ CaDiv(X)→ Lin(X),

which sends D ∈ Div(X) to an invertible sheaf (D) defined by

X(D)(U ) = {f ∈ K(X) ∣ ((f ) +D)|U ≥ 0}.

Note we can always obtain a (not necessarily invertible) sheaf X(D) in this way with the following nice
properties:
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Lemma A.1.15.1. [Fer01, Proposition 3.3.] Let X be a normal scheme satisfying (∗).

(i) For every Weil divisor D, the sheaf is reflexive, i.e. coherent and with the canonical map
to its second dual X(D) → X(D))∨∨ being an isomorphism, and locally free of rank one
at every generic point and at every point of codimension 1.

(ii) Conversely, any reflexive sheaf locally free of rank one at every generic point and at every
point of codimension 1 is isomorphic to X(D) for some Weil divisor D.

(iii) If D1 and D2 are Weil divisors on X, then D1 ∼ D2 if and only if X(D1) ≅ X(D2) as
X-modules.

(iv) If D,D1, D2 are Weil divisors on X, we have X(−D) ≅ X(D)∨ and X(D1 + D2) =
(X(D1)⊗ X(D2))∨∨.

◾

▬

We can always regard a Cartier divisor as an invertible sheaf, but the converse is true only for a sufficiently
nice scheme.

Lemma A.1.16. [Liu02, Proposition 7.1.18, Corollary 7.1.19] Let X be a scheme.

(i) The natural map CaDiv(X)→ Lin(X);D ↦ X(D) induces an injective homomorphism

Ψ ∶ CaCl(X)→ Pic(X),

where Pic(X) denote thePicard group ofX, i.e., the group of isomorphism classes of invertible sheaves
on X.

(ii) In particular, we have a natural isomorphism

Ψ ∶ CaCl(X)
∼
→ Im(Φ) = {invertible sheaves contained in X}.

(iii) If X is moreover a noetherian scheme without embedded point (e.g., reduced); then the natural
map Ψ is an isomorphism:

Ψ ∶ CaCl(X)
∼
→ Pic(X).

▬

Corollary A.1.17. If X is a noetherian, integral, separated locally factorial scheme (e.g. a non-singular
variety), then there are natural isomorphisms

Cl(X) ≅ CaCl(X) ≅ Pic(X).

▬
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A.2 Canonical divisors on a non-singular variety
Definition A.2.1. Let X be a non-singular k-variety of dimension n. The canonical sheaf is defined to
be the line bundle KX ∶= det ΩX∕k = ΩnX∕k, where ΩX∕k denotes the sheaf of relative differentials (e.g.
[Liu02, Definition 6.1.19.]) and is locally free of rank n asX is non-singular (e.g. [Liu02, Proposition 6.2.2.]).
The corresponding Weil divisor KX is called the canonical divisor of X (cf. Corollary A.1.17). ▬

Example A.2.2. First of all, note we have Cl(ℙnk) ≅ ℤ ([Har77, Proposition II.6.4.]), where a generator is the
hyperplane section, i.e. the divisor class given by hyperplanes, and in particular for any divisor D of degree
d as a hypersurface, we haveD ∼ dH . In other words, the invertible sheaf ℙnk

(1) generates Pic(X) and any
invertible sheaf is isomorphic to ℙnk

(d) for some d ∈ ℤ. Now, we have Kℙnk
= −(n + 1)H . For example,

see [Har77, Theorem II.8.20.1.] where we use a suitable exact sequence. Otherwise, observe that the n-form

w0 =
dx1
x1

∧⋯ ∧
dxn
xn

on {x0 ≠ 0} ⊂ ℙnx0,…,xn
extends to a canonical n-form form w on ℙnk in the obvious way. Since w does not

have zeros and has poles of multiplicity 1 along each hypersurface, we are done. ▬

Let us recall some useful techniques and computations.

Theorem A.2.3 (Adjunction Formula). [Vak17, 21.5.B.] Suppose that X is a smooth variety and Z is a
smooth subvariety of X. Then, we have

KZ ≅KX|Z ⊗ detZ∕X ,

where Z∕X ∶= (∕2)∨ is the normal sheaf for a closed immersion Z ↪ X with ideal sheaf . In
particular, if D is a smooth effective Cartier divisor of X, then D∕X ≅ X(D)|D (cf. Remark A.1.14 or
[Vak17, 21.2.H.]) and hence

KD ≅ (KX ⊗ X(D))|D
or in terms of divisors

KD = (KX +D)|D.

▬

Corollary A.2.4 (Adjunction Formula for Curves). [Har67, Proposition V.1.5.] If C is a non-singular curve
of genus g on a non-singular surface X. Then, 2g − 2 = (C ⋅ (C +KX)). ▬

Definition A.2.5. Let f ∶ X → Y be a birational morphism of non-singular varieties. Then, the relative
canonical divisor with respect to f is defined to be KX∕Y ∶= KX − f ∗KY . ▬

Example A.2.6. [Har77, Proposition V.3.3.] LetX be a non-singular surface and � ∶ X̃ → X be the blow-up
at a point P ∈ X with the exceptional divisor E. Then,KX̃∕X = E. First, note the following straightforward
formulas:

Lemma A.2.6.1. [Har77, Proposition V.3.2.] Let X be a non-singular surface and � ∶ X̃ → X
be the blow-up at a point P ∈ X with the exceptional divisor E. If C,D ∈ PicX, then ((�∗C) ⋅
(�∗D)) = (C ⋅D) and ((�∗C) ⋅ E) = 0. ◾
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Now, since � induces an isomorphism X̃ ⧵ E
∼
→ X ⧵ {P }, we have KX̃ = �∗KX +D, where SuppD ⊂

Ex(�) = E. Since E is irreducible, we have KX̃ = �∗KX + nE for some n ∈ ℤ (which also follows
directly from Lemma A.1.4 and Lemma A.2.6.1). Now, by the adjunction formula for curves, we have −2 =
(E ⋅ (E + KX̃)) = −1 + (E ⋅ KX̃). Hence, by Lemma A.2.6.1, n = 1. There are other ways to see this (e.g.
[oM18, p.7]). ▬

This is generalized as follows:

Lemma A.2.7. [Har77, II.Ex.8.5(b)] Let X be a nonsingular variety, Y a non-singular subvariety of codi-
mension r ≥ 2, � ∶ X̃ → X the blow-up of X along Y , and Y ′ = �−1(Y ). Then, we have KX̃ ≅
f ∗KX ⊗ X̃((r − 1)Y ′), i.e. KX̃∕X = (r − 1)Y ′. ▬

A.3 Positivity of divisors
We first review how we obtain a morphism to a projective space.

Definition A.3.1. Let X be a scheme and let  be an X-module. Then,  is said to be generated by
global sections si ∈  (X) (i ∈ I) if x is generated by (si)x as an X,x-module, or equivalently if the
corresponding morphism

⨁

i∈I X → F is surjective. We say  is globally generated if  is generated by
some global sections. ▬

For a line bundle on an R-scheme for a ring R, being generated by finitely many global sections is
equivalent to having sufficiently many global sections to define a morphism into a projective space in the
following sense.

Lemma A.3.2. [Har77, Theorem II.7.1.] Let R be a ring and X an R-scheme.

(i) Suppose we have an R-morphism � ∶ X → ℙnR = ProjR[x0,… , xn]. Then, �∗(ℙnR
(1)) is an

invertible sheaf on X, which is globally generated by si = �∗(xi).

(ii) Conversely, if  is an invertible sheaf on X and generated by global sections s0,… , sn ∈ Γ(X,),
then there exists an unique R-morphisms X → ℙnR such that  ≅ �∗ℙnR

and si�∗(xi) under the
isomorphism.

▬

Proof. Part (i) follows from the fact that ℙnA
is generated by global sections xi ∈ Γ(ℙnR,ℙnR

(1)). To see
part (ii), let

Xi = {p ∈ X ∣ (si)p ∉ mpp}.

Then,Xi is the complement of the vanishing scheme of si and is an open subscheme ofX. Since si generates
, we have obtained an open cover {Xi} of X. Now, we define a morphism from Xi to the standard chart
Ui = SpecR[y0,… , yn] with yj = xj∕xi by the ring homomorphism

R[y0,… , yn]→ Γ(Xi,Xi ); yj ↦ sj∕si.

It is straightforward to check that this gives the desired morphism. ▭

On a smooth projective variety, we have another characterization of having enough global sections to
define a morphism to a projective space.
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Definition A.3.3. Let X be a non-singular projective variety over k (so that Γ(X,X) = k).

(i) A complete linear system |D0| of D0 ∈ Div(X) on X is the (possibly empty) set of effective
divisors linearly equivalent to D0. One can easily see that |D0| is in one-to-one correspondence with
the set (Γ(X,(D0)) ⧵ {0})∕k∗, which gives |D0| a structure of the set of closed points of a projective
space over k. ([Har77, Proposition II.7.7.])

(ii) A linear system d on X is a subset of a complete linear system |D0| that is a linear subspace with
respect to the projective space structure of |D0|. In particular, d corresponds to a vector subspace
V ⊂ Γ(X,(D0)), where V = {s ∈ Γ(X,(D0)) ∣ (s)0 ∈ d} ∪ {0}, where (s)0 denote the divisors of
zeros of s defined as a Cartier divisor {U,�U (s)} for trivialization �U ∶ (D0)|U

∼
→ U .

(iii) A point x ∈ X is a base point of a linear system d if p ∈ SuppD for all D ∈ d. The set of base
points is called the base locus of d. A linear system d is said to be base-point-free if the base locus is
empty.

▬

Lemma A.3.4. [Har77, Lemma II.7.8.] Let X be a smooth projective variety and d a linear system on X
corresponding to the subspace V ⊂ Γ(X,), Then, a point p ∈ X is a base point if and only if sp ∈ mpp
for all s ∈ V . In particular, d is base-point-free if and only if  is generated by global sections in V . ▬

Remark A.3.5. In short, to give a morphism fromX to a projective space is equivalent to giving a base-point-
free linear system whose corresponding vector space is finite-dimensional. ▬

We review definitions/defining properties of positivity of divisors.

Definition A.3.6. Let X be an algebraic variety and  be a line bundle on X.

(i)  is base-point-free if the corresponding complete linear space is base-point-free, i.e., for any x ∈ X
there exists E ∈ H0(X,) such that x ∉ SuppE.

(ii)  is very ample if  is base-point-free and the corresponding morphism is an embedding into a
projective space.

(iii)  is ample if ⊗n is very ample for n ≫ 0, which is equivalent to the following if X is moreover
proper:

(a) (Cohomological criterion) For any coherent sheaves  on X, Hi(X, ⊗⊗n) = 0 for i > 0 and
n ≫ 0 [Har77, Proposition III.5.3.].

(b) (Intersection theory) For every closed integral subscheme Z ⊂ X, (⊗ dimZ ⋅Z) > 0.

In particular, (b) is called the Nakai-Moishezon criterion [KM98, Theorem 1.37.].

(iv)  is nef if ( ⋅ C) ≥ 0 for every irreducible curve C ⊂ X. More generally, one can define nef
ℚ-Cartier divisors in the same way.

▬
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A.4 Cones inN1(X)
Now, let us observe the relations among these concepts by considering corresponding cones (see Definition
2.1.1) in a suitable vector space. Other than linear equivalence, we can also consider several equivalence
relations on Div(X).

Definition A.4.1. Let X be a noetherian, integral, separated locally factorial scheme.

(i) DivisorsD1, D0 ∈ Div(X) are numerically equivalent if (D1 ⋅C) = (D0 ⋅C) for any curve C ⊂ X.

(ii) Divisors D1, D0 ∈ Div(X) are algebraically equivalent if there is a curve C and a divisor D on
X ×C flat over C , such that [D ∩X × {0}] − [D ∩X × {1}] = [D1] − [D0] for some two points 0 and
1 on the curve.

▬

Lemma A.4.2. Linear equivalence implies algebraic equivalence and algebraic equivalence implies numer-
ical equivalence. ▬

We can also consider the quotient group with respect to algebraic equivalence.

Definition A.4.3. Let X be a noetherian, integral, separated locally factorial scheme. We define the Néron-
Severi group NS(X) to be the quotient group Pic(X)∕ Pic0(X), where Pic0(X) is the connected component.
Since closed points of Pic0(X) are algebraically trivial divisors (i.e., algebraically equivalent to 0), NS(X)
geometrically represents the algebraic equivalence classes of divisors on X. To observe cones, we usually
consider the real vector spaceN1(X) ∶= NS(X)⊗ℤ ℝ. ▬

Remark A.4.4. We have the following diagram:

0

��
CaPrinc(X)

��
CaDiv(X)

��
0 // Pic0(X) // Pic(X)

��

// NS(X) // 0

0

▬

ConstructionA.4.5. LetN1(X) denote the quotient of the formalℝ-linear group of 1-cycles (i.e. irreducible,
reduced curves) by the numerical equivalence, where two 1-cycles C and C ′ are said to be numerically
equivalent if (C ⋅D) = (C ′ ⋅D) for any Cartier divisor D. Then, we have a perfect paring

N1(X) ×N1(X)→ ℝ, (Y ,Z)↦ (Y ⋅Z),
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which is well-defined by the definition of numerical equivalence of cycles and the fact that algebraic equiva-
lence implies numerical equivalence. Hence, by the theorem of the base of Néron-Severi, which saysN1(X)
is finite-dimensional, we see thatN1(X) is finite dimensional, whose dimension is called the Picard number
and denoted by �(X). ▬

Now, notice that if 1 and 2 are nef, effective, ample, then so is any positive linear combination of
1 and 2. Hence, they define cones of Pic(X)⊗ℤ ℝ. Furthermore, since they also respect the numerical
equivalence, we see that the corresponding cones of Pic(X)⊗ℤ ℝ descend to the cones ofN1(X). Note we
can also consider the corresponding dual cones inN1(X). There are several criteria that can be written with
the language of cones inN1(X) andN1(X) and the following result is particularly useful in this thesis:

Theorem A.4.6 (Kleiman’s Ampleness Criterion). [KM98, Theorem 1.18.] Let X be a projective variety
and D a Cartier divisor. Then, D is ample if and only if

N1(X)D>0 ⊃ NE(X) ⧵ {0},

where N1(X)D>0 denotes {x ∈ N1(X) ∣ (x ⋅ D) > 0} and NE(X) denotes the cone of curves (Definition
2.1.2). ▬



Appendix B

Algebraic groups and quotients

B.1 Linear algebraic groups
We quickly review some facts regarding linear algebraic groups (e.g. cf. [Dré00, Section 2.3.]).

Definition B.1.1. An algebraic group is a group object in the category of algebraic varieties. A closed
subscheme of an algebraic group is called an algebraic subgroup if it inherits the algebraic group structure.

▬

Construction B.1.2. The general linear group GLn(k) over a field k can be equipped with an affine scheme
structure by regarding it as a subscheme of An2+1 = Spec k[{Tij}i,j , T ] cut out by the equation

(det(Tij)i,j) ⋅ T = 1.

In other words, we have GLn(k) = Spec k[{Tij}i,j , det−1], where det = det(Tij)i,j . For example,

GL1(k) = Spec k[T , T −1]

is called the multiplicative algebraic group and denoted by Gm∕k. Now, GLn(k) has the structure of an
algebraic group given by the comultiplication

Δ ∶ k[{Tij}i,j , det −1]→ k[{Tij}i,j , det −1]⊗k k[{Tij}i,j , det −1] ∶ Tij ↦
∑

1≤l≤n
Til ⊗ Tlj .

Note the comultiplication Δ induces the usual matrix multiplication on (the closed points of) GLn(k). An
algebraic subgroup of GLn(k) is called a linear algebraic group. ▬

Example B.1.3. Any finite group G with |G| = n can be viewed as a closed subgroup of GLn(k) as permu-
tations of n elements, which gives a reduced k-scheme structure to G. ▬

Definition B.1.4. Let G be an algebraic group with multiplication morphism m ∶ G ×k G → G and identity
element e ∈ G.

(i) A variety X over k together with a morphism  ∶ G ×k X → X of varieties over k is said to be
a G-variety if  (g2,  (g1, x)) =  (m(g2, g1), x) and  (e, x) = x for all x ∈ X and g1, g2 ∈ G. The
morphism  is often omitted from the notation and  (g, x) is often denoted by g ⋅ x.

62
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(ii) Let X and Y be G-varieties over k. Then, a morphism f ∶ X → Y of varieties over k is said to be
a G-morphism if f (g ⋅ x) = g ⋅ f (x) for all x ∈ X and g ∈ G.

(iii) Let X be a G-variety over k and Y a variety over k. Then, a morphism f ∶ X → Y of varieties
over k is said to be G-invariant if f (g ⋅ x) = f (x) for all x ∈ X and g ∈ G.

▬

B.2 Complex reductive groups and quotients
Notions of quotients of G-varieties by the G-action could be troublesome in some cases, but here we will
only focus on some simple cases, in particular over ℂ.

Definition B.2.1. Let X be a real algebraic variety. Then, the complexification Xℂ of X is the complex
algebraic variety X ×ℝ Specℂ → Specℂ. ▬

Since the category of algebraic groups is closed under fiber product, the complexification of an algebraic
group has a canonical group structure.

Definition B.2.2. Let K be a real algebraic group whose real points K(ℝ) form a real compact Lie group.
The complexification G = Kℂ of K is called a complex reductive group and K is a maximal compact
subgroup of G. ▬

Remark B.2.3. The preceding definition of reductive groups is obviously not general. Generally, a connected
algebraic group over a field k of characteristic zero is said to be reductive if the category of finite dimensional
representations of G over k is semi-simple, i.e. every finite dimensional representation is isomorphic to the
direct sum of irreducible subrepresentations ([Mil15, Theorem 22.138.]). These definitions indeed coincide
over ℂ (cf. [Kam, Section 5.2]). ▬

Example B.2.4. Note by Cartan’s closed subgroup theorem, any closed subgroup of a Lie group is a Lie
subgroup. Hence, compact subgroups ofGLn produce a lot of examples. For example, U(n)ℂ = GLn(ℂ) (see
below when n = 1), SU(n)ℂ = SLn(ℂ), Sp(n)ℂ = Sp2n(ℂ), etc. Furthermore, finite groups are also complex
reductive groups with trivial ℂ-action. ▬

Example B.2.5. Let K = U(1) = S1 = Specℝ[X, Y ]∕⟨X2 + Y 2 − 1⟩ℝ. Then,

Kℂ ≅ Spec
(

(ℝ[X, Y ]∕⟨X2 + Y 2 − 1⟩ℝ)⊗ℝ ℂ
)

≅ Specℂ[u, v]∕⟨uv − 1⟩ℂ ≅ Specℂ[X]X ≅ Gm∕ℂ.

Since Gm∕ℝ ×ℝ ℂ ≅ Gm∕ℂ, there are non-isomorphic real algebraic groups whose complexifications are
isomorphic. ▬

One of the most useful facts, due to Nagata, about complex reductive groups is the following, which is
false for a general G.

Lemma B.2.6. [Nag64, Main Theorem] If G is a complex reductive group and A is a finitely generated ℂ-
algebra, then AG is a finitely generated ℂ-algebra, where AG denotes the subring of G-invariant elements.

▬

Hence, we can define the following
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Definition B.2.7. Let G be a reductive group and X = SpecA be an affine G-variety. Then, the inclusion
AG ↪ A induces a morphism of affine varieties by Lemma B.2.6:

� ∶ X → X∕∕G ∶= SpecAG,

The pair (X∕∕G, �) is called the affine (GIT) quotient of X by G. ▬

More generally, we can construct a (GIT) quotient when affine quotients glue successfully. Let me quickly
explain some important properties of affine quotients.

Definition B.2.8. Let G be an algebraic group andX a G-variety. Then, a pair (Y , p) of a variety Y together
with a G-invariant morphisms p ∶ X → Y is said to be:

(i) a categorical quotient if for every G-invariant morphism f ∶ X → Z, there exists a unique mor-
phism f ∶ Y → Z such that f◦p = f .

(ii) a good quotient if p satisfies the following:

(a) p is affine and surjective;
(b) the natural homomorphism Y (U ) → X(�−1(U ))G is an isomorphism for every open subset

U ⊂ Y ;
(c) If V1 and V2 are G-invariant closed subsets of X withW1 ∩W2 = ∅, then p(V1) ∩ p(V2) = ∅.

Note that a good quotient is local on the target. Also, a good quotient is a categorical quotient ([New06,
Proposition 1.11]). ▬

LemmaB.2.9. [Dré00, Theorem 2.16.] An affine quotient (X∕∕G, �) of an affineG-varietyX by a (complex)
reductive group G is a good quotient. ▬

Since a good quotient is local on the target, general (GIT) quotients are good quotients and in particular
categorical quotients. Now, good quotients are “good” for example in the following sense:

Lemma B.2.10. [Dré00, Proposition 2.15.] LetG be an algebraic group andX aG-variety. Suppose a good
quotient (Y , p) ofX by G exists. Then, ifX is normal (resp. reduced, resp. irreducible, resp. connected), so
is Y . ▬
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