Nadler's Geometric Representation Theory Seminar (2023 Fall)

Topic: Relative Langlands Duality
Meeting time: Thursdays 12:30pm-2:00pm
Room: 1015 Evans Hall (UC Berkeley)
Organizers: Ansuman Bardalai and Daigo Ito (Please email Daigo Ito if you want to be added to an emailing list.)

Schedule

8/31 David Nadler Introduction to relative Langlands program
9/7 Elliot Kienzle Hamiltonian \(G\)-spaces and moment maps Elliot's note
9/14 Elliot Kienzle Coadjoint orbits and multiplicity free Hamiltonian \(G\)-spaces Elliot's note
9/21 Mark Macerato/David Nadler Examples of multiplcity free Hamiltonian \(G\)-spaces and spherical varieties Section 3
9/28 Mark Macerato Introduction to hyperspherical varieteis Section 3
10/5 Mark Macerato Coisotropic G-varieties Section 3
10/12 Mark Macerato/David Nadler Weinstein manifolds and hyperspherical varieties Section 3
10/19 Mark Macerato Sheared Hamiltonian G-spaces and Whittaker induction Section 3
10/26 Jeremey Taylor Relative local Langlands conjecture and the example when \(M = pt\)
11/02 Jeremey Taylor The example when \(M = \operatorname{PGL}_2/T\) and \(G = \operatorname{PGL}_2\)
11/09 Jeremey Taylor The example when \(M = \operatorname{SO}_5/\operatorname{SO}_4\) and \(G = \operatorname{SO}_5\)
11/16 Jeremey Taylor Conclusion for the semester

Note

Check here for a note taken by John Nolan.

Reference

David Ben-Zvi, Yiannis Sakellaridis and Akshay Venkatesh, Relative Langlands Duality
Reyer Sjamaar, Convexity Properties of the Moment Mapping Re-examined